Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array

被引:1
作者
Yuan, Qichen [1 ]
Zeng, Hongzhi [1 ]
Daniel, Tyler C. [1 ,2 ,3 ]
Liu, Qingzhuo [4 ]
Yang, Yongjie [4 ]
Osikpa, Emmanuel C. [1 ]
Yang, Qiaochu [1 ]
Peddi, Advaith [5 ]
Abramson, Liliana M. [5 ]
Zhang, Boyang [6 ]
Xu, Yong [4 ,7 ,8 ]
Gao, Xue [1 ,2 ,3 ,9 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Precis Engn Hlth, Philadelphia, PA 19104 USA
[4] Baylor Coll Med, USDA ARS Childrens Nutr Res Ctr, Dept Pediat, Houston, TX USA
[5] Rice Univ, Dept Biosci, Houston, TX USA
[6] Rice Univ, Dept Bioengn, Houston, TX USA
[7] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX USA
[8] Baylor Coll Med, Dept Med, Houston, TX USA
[9] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
REVERSE-TRANSCRIPTASE; GENOMIC DNA; ACTIVATION; MOUSE; INTERFERENCE; EXPRESSION; DATABASE; COMPLEX; SYSTEM; CRISPR;
D O I
10.1038/s41467-024-55134-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation. mvGPT can precisely edit human genome via PE coupled with a prime editing guide RNA and a nicking guide RNA, activate endogenous gene expression using PE with a truncated single guide RNA containing MPH-recruiting MS2 aptamers, and silence endogenous gene expression via RNA interference with a short-hairpin RNA. We showcase the versatility of mvGPT by simultaneously correcting a c.3207C>A mutation in the ATP7B gene linked to Wilson's disease, upregulating the PDX1 gene expression to potentially treat Type I diabetes, and suppressing the TTR gene to manage transthyretin amyloidosis. In addition to plasmid delivery, we successfully utilize various methods to deliver the mvGPT payload, demonstrating its potential for future in vivo applications.
引用
收藏
页数:12
相关论文
共 59 条
[1]  
Yuan Q., Gao X., Multiplex base- and prime-editing with drive-and-process CRISPR arrays, Nat. Commun, 13, (2022)
[2]  
McCarty N.S., Graham A.E., Studena L., Ledesma-Amaro R., Multiplexed CRISPR technologies for gene editing and transcriptional regulation, Nat. Commun, 11, (2020)
[3]  
Gao Y., Et al., Complex transcriptional modulation with orthogonal and inducible dCas9 regulators, Nat. Methods, 13, pp. 1043-1049, (2016)
[4]  
Dahlman J.E., Et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease, Nat. Biotechnol, 33, pp. 1159-1161, (2015)
[5]  
Kiani S., Et al., Cas9 gRNA engineering for genome editing, activation and repression, Nat. Methods, 12, pp. 1051-1054, (2015)
[6]  
Campa C.C., Weisbach N.R., Santinha A.J., Incarnato D., Platt R.J., Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts, Nat. Methods, 16, pp. 887-893, (2019)
[7]  
Kosicki M., Tomberg K., Bradley A., Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol, 36, pp. 765-771, (2018)
[8]  
Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J., CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response, Nat. Med, 24, pp. 927-930, (2018)
[9]  
Ihry R.J., Et al., p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells, Nat. Med, 24, pp. 939-946, (2018)
[10]  
Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, pp. 420-424, (2016)