Towards efficient and effective unlearning of large language models for recommendation

被引:2
作者
Wang, Hangyu [1 ]
Lin, Jianghao [1 ]
Chen, Bo [2 ]
Yang, Yang [2 ]
Tang, Ruiming [2 ]
Zhang, Weinan [1 ]
Yu, Yong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Comp Sci & Technol, Shanghai 200240, Peoples R China
[2] Huawei Noahs Ark Lab, Shenzhen 518129, Peoples R China
基金
中国国家自然科学基金;
关键词
Teaching;
D O I
10.1007/s11704-024-40044-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we propose E2URec, the efficient and effective unlearning method for LLMRec. Our method enables LLMRec to efficiently forget the specific data by only updating the lightweight LoRA modules. Besides, to enhance the effectiveness, our method develop two teacher models to instruct the unlearned model to forget information without harming the recommendation performance. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. © Higher Education Press 2025.
引用
收藏
页数:3
相关论文
共 6 条
[1]   Machine Unlearning [J].
Bourtoule, Lucas ;
Chandrasekaran, Varun ;
Choquette-Choo, Christopher A. ;
Jia, Hengrui ;
Travers, Adelin ;
Zhang, Baiwu ;
Lie, David ;
Papernot, Nicolas .
2021 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2021, :141-159
[2]   Recommendation Unlearning [J].
Chen, Chong ;
Sun, Fei ;
Zhang, Min ;
Ding, Bolin .
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, :2768-2777
[3]  
Chen JA, 2023, 2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), P12041
[4]  
Chundawat VS, 2023, AAAI CONF ARTIF INTE, P7210
[5]   Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks [J].
Golatkar, Aditya ;
Achille, Alessandro ;
Soatto, Stefano .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9301-9309
[6]  
Raffel C, 2020, J MACH LEARN RES, V21