Periodic points of self-maps of a space with π1X=Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1X=\mathbb {Z}_{p^s}$$\end{document}

被引:0
作者
Jerzy Jezierski [1 ]
Xuezhi Zhao [2 ]
机构
[1] Warsaw University of Life Sciences (SGGW),Institute of Applications of Informatics and Mathematics
[2] Capital Normal University,School of Mathematical Sciences
关键词
Periodic points; Nielsen number; least number of periodic points; fixed point index; group ; Primary 55M20; Secondary 37C05; 37C25;
D O I
10.1007/s11784-024-01155-2
中图分类号
学科分类号
摘要
The crucial homotopy invariants in Nielsen periodic point theory are numbers: NPn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NP_n(f)$$\end{document}, which is a lower bound of the number of periodic points of length n, and NFn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NF_n(f)$$\end{document} a lower bound of the number of periodic points of length dividing n. Here, f:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow X$$\end{document} is a self-map of a compact polyhedron. We derive formulae of the invariants for self-maps of polyhedra with fundamental group π1M=Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1 M=\mathbb {Z}_{p^s}$$\end{document} whose all irreducible classes are essential.
引用
收藏
相关论文
empty
未找到相关数据