EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [18F]FDG brain studies

被引:1
作者
De Francisci, Mattia [1 ]
Silvestri, Erica [1 ]
Bettinelli, Andrea [1 ,2 ]
Volpi, Tommaso [3 ,4 ]
Goyal, Manu S. [5 ]
Vlassenko, Andrei G. [5 ]
Cecchin, Diego [3 ,6 ]
Bertoldo, Alessandra [1 ,3 ]
机构
[1] Univ Padua, Dept Informat Engn, Padua, Italy
[2] Veneto Inst Oncol IOV IRCSS, Med Phys Dept, Padua, Italy
[3] Univ Padua, Padova Neurosci Ctr, Padua, Italy
[4] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT USA
[5] Washington Univ, Mallinckrodt Inst Radiol, Sch Med, Neuroimaging Labs, St Louis, MO USA
[6] Univ Padua, Dept Med, Unit Nucl Med, Padua, Italy
关键词
IDIF; F-18]FDG; PVE; Kinetic modeling; POSITRON-EMISSION-TOMOGRAPHY; CEREBRAL GLUCOSE-UTILIZATION; PET; QUANTIFICATION; BODY;
D O I
10.1186/s40658-024-00707-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: PET imaging is a pivotal tool for biomarker research aimed at personalized medicine. Leveraging the quantitative nature of PET requires knowledge of plasma radiotracer concentration. Typically, the arterial input function (AIF) is obtained through arterial cannulation, an invasive and technically demanding procedure. A less invasive alternative, especially for [F-18]FDG, is the image-derived input function (IDIF), which, however, often requires correction for partial volume effect (PVE), usually performed via venous blood samples. The aim of this paper is to present EMATA: Extraction and Modeling of Arterial inputs for Tracer kinetic Analysis, an open-source MATLAB toolbox. EMATA automates IDIF extraction from [F-18]FDG brain PET images and additionally includes a PVE correction procedure that does not require any blood sampling. Methods: To assess the toolbox generalizability and present example outputs, EMATA was applied to brain [F-18]FDG dynamic data of 80 subjects, extracted from two distinct datasets (40 healthy controls, 40 glioma patients). Additionally, to compare with the reference standard, quantification using both IDIF and AIF was carried out on a third open-access dataset of 18 healthy individuals. Results: EMATA consistently performs IDIF extraction across all datasets, despite differences in scanners and acquisition protocols. Remarkably high agreement is observed when comparing Patlak's K-i between IDIF and AIF (R-2: 0.98 +/- 0.02). Conclusion: EMATA proved adaptability to different datasets characteristics and the ability to provide arterial input functions that can be used for reliable PET quantitative analysis.
引用
收藏
页数:21
相关论文
共 38 条
[1]   A review of harmonization strategies for quantitative PET [J].
Akamatsu, Go ;
Tsutsui, Yuji ;
Daisaki, Hiromitsu ;
Mitsumoto, Katsuhiko ;
Baba, Shingo ;
Sasaki, Masayuki .
ANNALS OF NUCLEAR MEDICINE, 2023, 37 (02) :71-88
[2]   Quantification of Brain Glucose Metabolism by 18F-FDG PET with Real-Time Arterial and Image-Derived Input Function in Mice [J].
Alf, Malte F. ;
Wyss, Matthias T. ;
Buck, Alfred ;
Weber, Bruno ;
Schibli, Roger ;
Kraemer, Stefanie D. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (01) :132-138
[3]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[4]   Evaluation of compartmental and spectral analysis models of [18F]FDG kinetics for heart and brain studies with PET [J].
Bertoldo, A ;
Vicini, P ;
Sambuceti, G ;
Lammertsma, AA ;
Parodi, O ;
Cobelli, C .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (12) :1429-1448
[5]   Deriving physiological information from PET images: From SUV to compartmental modelling [J].
Bertoldo A. ;
Rizzo G. ;
Veronese M. .
Clinical and Translational Imaging, 2014, 2 (3) :239-251
[6]   A Variational Bayesian inference method for parametric imaging of PET data [J].
Castellaro, M. ;
Rizzo, G. ;
Tonietto, M. ;
Veronese, M. ;
Turkheimer, F. E. ;
Chappell, M. A. ;
Bertoldo, A. .
NEUROIMAGE, 2017, 150 :136-149
[7]  
Castrillon Gabriel, 2023, OpenNeuro, DOI 10.18112/OPENNEURO.DS004513.V1.0.4
[8]   An energy costly architecture of neuromodulators for human brain evolution and cognition [J].
Castrillon, Gabriel ;
Epp, Samira ;
Bose, Antonia ;
Fraticelli, Laura ;
Hechler, Andre ;
Belenya, Roman ;
Ranft, Andreas ;
Yakushev, Igor ;
Utz, Lukas ;
Sundar, Lalith ;
Rauschecker, Josef P. ;
Preibisch, Christine ;
Kurcyus, Katarzyna ;
Riedl, Valentin .
SCIENCE ADVANCES, 2023, 9 (50)
[9]   Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function [J].
Chen, K ;
Bandy, D ;
Reiman, E ;
Huang, SC ;
Lawson, M ;
Feng, D ;
Yun, LS ;
Palant, A .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (07) :716-723
[10]   caliPER: A software for blood-free parametric Patlak mapping using PET/MRI input function [J].
Dassanayake, Praveen ;
Cui, Lumeng ;
Finger, Elizabeth ;
Kewin, Matthew ;
Hadaway, Jennifer ;
Soddu, Andrea ;
Jakoby, Bjoern ;
Zuehlsdorf, Sven ;
Lawrence, Keith S. St ;
Moran, Gerald ;
Anazodo, Udunna C. .
NEUROIMAGE, 2022, 256