Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model

被引:0
作者
Da Re, Daniele [1 ,2 ]
Marini, Giovanni [2 ,3 ]
Bonannella, Carmelo [4 ,5 ]
Laurini, Fabrizio [6 ,7 ]
Manica, Mattia [3 ,8 ]
Anicic, Nikoleta [9 ]
Albieri, Alessandro [10 ]
Angelini, Paola [11 ]
Arnoldi, Daniele [2 ]
Bertola, Federica
Caputo, Beniamino [12 ]
De Liberato, Claudio [13 ]
della Torre, Alessandra [12 ]
Flacio, Eleonora [9 ]
Franceschini, Alessandra [14 ]
Gradoni, Francesco [15 ]
Kadriaj, Perparim [16 ]
Lencioni, Valeria [14 ]
Del Lesto, Irene [13 ]
Russa, Francesco La [17 ]
Lia, Riccardo Paolo [18 ]
Montarsi, Fabrizio [15 ]
Otranto, Domenico [18 ,20 ]
L'Ambert, Gregory [19 ]
Rizzoli, Annapaola [2 ,3 ]
Rombola, Pasquale [13 ]
Romiti, Federico [13 ]
Stancher, Gionata
Torina, Alessandra [17 ]
Velo, Enkelejda [16 ]
Virgillito, Chiara [12 ]
Zandonai, Fabiana
Rosa, Roberto [1 ]
机构
[1] Univ Trento, Ctr Agr Food & Environm, San Michele All Adige, Italy
[2] Fdn Edmund Mach, Res & Innovat Ctr, San Michele Alladige,, Italy
[3] Epilab JRU, FEM FBK Joint Res Unit, Trento, Italy
[4] OpenGeoHub Fdn, Doorwerth, Netherlands
[5] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, Wageningen, Netherlands
[6] Univ Parma, Dept Econ & Management, Parma, Italy
[7] Univ Parma, RoSA, Parma, Italy
[8] Bruno Kessler Fdn, Ctr Hlth Emergencies, Trento, Italy
[9] Univ Appl Sci & Arts Southern Switzerland SUPSI, Inst Microbiol, Mendrisio, Switzerland
[10] Ctr Agr Ambiente G Nicoli, Crevalcore, Italy
[11] Reg Hlth Author Emilia Romagna, Bologna, Italy
[12] Univ Sapienza, Dipartimento Sanita Pubbl & Malattie Infett, Rome, Italy
[13] Ist Zooprofilatt Sperimentale Lazio & Toscana, Rome, Italy
[14] MUSE Museo Sci, Res & Museum Collect Off, Climate & Ecol Unit, Trento, Italy
[15] Ist Zooprofilatt Sperimentale Venezie, Padua, Italy
[16] Inst Publ Hlth, Tirana, Albania
[17] Ist Zooprofilatt Sperimentale Sicilia, Palermo, Italy
[18] Univ Bari, Dept Vet Med, Bari, Italy
[19] EID Mediterranee, Montpellier, France
[20] City Univ Hong Kong, Dept Vet Clin Sci, Hong Kong, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Arthropod; Forecast; Invasive species; Mosquito; Population dynamics; Time-series; AEDES-ALBOPICTUS; MOSQUITO SURVEILLANCE; OUTBREAK; TEMPERATURE; RAINFALL;
D O I
10.1038/s41598-025-87554-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various modelling techniques are available to understand the temporal and spatial variations of the phenology of species. Scientists often rely on correlative models, which establish a statistical relationship between a response variable (such as species abundance or presence-absence) and a set of predominantly abiotic covariates. The choice of the modeling approach, i.e., the algorithm, is itself a significant source of variability, as different algorithms applied to the same dataset can yield disparate outcomes. This inter-model variability has led to the adoption of ensemble modelling techniques, among which stacked generalisation, which has recently demonstrated its capacity to produce robust results. Stacked ensemble modelling incorporates predictions from multiple base learners or models as inputs for a meta-learner. The meta-learner, in turn, assimilates these predictions and generates a final prediction by combining the information from all the base learners. In our study, we utilized a recently published dataset documenting egg abundance observations of Aedesalbopictus collected using ovitraps. and a set of environmental predictors to forecast the weekly median number of mosquito eggs using a stacked machine learning model. This approach enabled us to (i) unearth the seasonal egg-laying dynamics of Ae.albopictus for 12 years; (ii) generate spatio-temporal explicit forecasts of mosquito egg abundance in regions not covered by conventional monitoring initiatives. Our work establishes a robust methodological foundation for forecasting the spatio-temporal abundance of Ae.albopictus, offering a flexible framework that can be tailored to meet specific public health needs related to this species.
引用
收藏
页数:12
相关论文
共 71 条
  • [21] Estimating abundance and phenology from transect count data with GLMs
    Edwards, Collin B.
    Crone, Elizabeth E.
    [J]. OIKOS, 2021, 130 (08) : 1335 - 1345
  • [22] Predicting the potential distribution of wheatear birds using stacked generalization-based ensembles
    El Alaoui, Omar
    Idri, Ali
    [J]. ECOLOGICAL INFORMATICS, 2023, 75
  • [23] A working guide to boosted regression trees
    Elith, J.
    Leathwick, J. R.
    Hastie, T.
    [J]. JOURNAL OF ANIMAL ECOLOGY, 2008, 77 (04) : 802 - 813
  • [24] Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse)
    Erguler, Kamil
    Smith-Unna, Stephanie E.
    Waldock, Joanna
    Proestos, Yiannis
    Christophides, George K.
    Lelieveld, Jos
    Parham, Paul E.
    [J]. PLOS ONE, 2016, 11 (02):
  • [25] The increasing relevance of phenology to conservation
    Ettinger, A. K.
    Chamberlain, C. J.
    Wolkovich, E. M.
    [J]. NATURE CLIMATE CHANGE, 2022, 12 (04) : 305 - 307
  • [26] Fand B. B., 2014, Approaches to Plant Stress and their Management, P107, DOI DOI 10.1007/978-81-322-1620-9_6
  • [27] Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara.
    Fourcade, Yoan
    [J]. ECOLOGICAL MODELLING, 2021, 457
  • [28] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [29] Machine Learning Modeling of Aedes albopictus Habitat Suitability in the 21st Century
    Georgiades, Pantelis
    Proestos, Yiannis
    Lelieveld, Jos
    Erguler, Kamil
    [J]. INSECTS, 2023, 14 (05)
  • [30] Guisan A., 2017, HABITAT SUITABILITY, P462, DOI [10.1017/9781139028271, DOI 10.1017/9781139028271]