Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model

被引:0
作者
Da Re, Daniele [1 ,2 ]
Marini, Giovanni [2 ,3 ]
Bonannella, Carmelo [4 ,5 ]
Laurini, Fabrizio [6 ,7 ]
Manica, Mattia [3 ,8 ]
Anicic, Nikoleta [9 ]
Albieri, Alessandro [10 ]
Angelini, Paola [11 ]
Arnoldi, Daniele [2 ]
Bertola, Federica
Caputo, Beniamino [12 ]
De Liberato, Claudio [13 ]
della Torre, Alessandra [12 ]
Flacio, Eleonora [9 ]
Franceschini, Alessandra [14 ]
Gradoni, Francesco [15 ]
Kadriaj, Perparim [16 ]
Lencioni, Valeria [14 ]
Del Lesto, Irene [13 ]
Russa, Francesco La [17 ]
Lia, Riccardo Paolo [18 ]
Montarsi, Fabrizio [15 ]
Otranto, Domenico [18 ,20 ]
L'Ambert, Gregory [19 ]
Rizzoli, Annapaola [2 ,3 ]
Rombola, Pasquale [13 ]
Romiti, Federico [13 ]
Stancher, Gionata
Torina, Alessandra [17 ]
Velo, Enkelejda [16 ]
Virgillito, Chiara [12 ]
Zandonai, Fabiana
Rosa, Roberto [1 ]
机构
[1] Univ Trento, Ctr Agr Food & Environm, San Michele All Adige, Italy
[2] Fdn Edmund Mach, Res & Innovat Ctr, San Michele Alladige,, Italy
[3] Epilab JRU, FEM FBK Joint Res Unit, Trento, Italy
[4] OpenGeoHub Fdn, Doorwerth, Netherlands
[5] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, Wageningen, Netherlands
[6] Univ Parma, Dept Econ & Management, Parma, Italy
[7] Univ Parma, RoSA, Parma, Italy
[8] Bruno Kessler Fdn, Ctr Hlth Emergencies, Trento, Italy
[9] Univ Appl Sci & Arts Southern Switzerland SUPSI, Inst Microbiol, Mendrisio, Switzerland
[10] Ctr Agr Ambiente G Nicoli, Crevalcore, Italy
[11] Reg Hlth Author Emilia Romagna, Bologna, Italy
[12] Univ Sapienza, Dipartimento Sanita Pubbl & Malattie Infett, Rome, Italy
[13] Ist Zooprofilatt Sperimentale Lazio & Toscana, Rome, Italy
[14] MUSE Museo Sci, Res & Museum Collect Off, Climate & Ecol Unit, Trento, Italy
[15] Ist Zooprofilatt Sperimentale Venezie, Padua, Italy
[16] Inst Publ Hlth, Tirana, Albania
[17] Ist Zooprofilatt Sperimentale Sicilia, Palermo, Italy
[18] Univ Bari, Dept Vet Med, Bari, Italy
[19] EID Mediterranee, Montpellier, France
[20] City Univ Hong Kong, Dept Vet Clin Sci, Hong Kong, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Arthropod; Forecast; Invasive species; Mosquito; Population dynamics; Time-series; AEDES-ALBOPICTUS; MOSQUITO SURVEILLANCE; OUTBREAK; TEMPERATURE; RAINFALL;
D O I
10.1038/s41598-025-87554-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various modelling techniques are available to understand the temporal and spatial variations of the phenology of species. Scientists often rely on correlative models, which establish a statistical relationship between a response variable (such as species abundance or presence-absence) and a set of predominantly abiotic covariates. The choice of the modeling approach, i.e., the algorithm, is itself a significant source of variability, as different algorithms applied to the same dataset can yield disparate outcomes. This inter-model variability has led to the adoption of ensemble modelling techniques, among which stacked generalisation, which has recently demonstrated its capacity to produce robust results. Stacked ensemble modelling incorporates predictions from multiple base learners or models as inputs for a meta-learner. The meta-learner, in turn, assimilates these predictions and generates a final prediction by combining the information from all the base learners. In our study, we utilized a recently published dataset documenting egg abundance observations of Aedesalbopictus collected using ovitraps. and a set of environmental predictors to forecast the weekly median number of mosquito eggs using a stacked machine learning model. This approach enabled us to (i) unearth the seasonal egg-laying dynamics of Ae.albopictus for 12 years; (ii) generate spatio-temporal explicit forecasts of mosquito egg abundance in regions not covered by conventional monitoring initiatives. Our work establishes a robust methodological foundation for forecasting the spatio-temporal abundance of Ae.albopictus, offering a flexible framework that can be tailored to meet specific public health needs related to this species.
引用
收藏
页数:12
相关论文
共 71 条
  • [1] Ensemble forecasting of species distributions
    Araujo, Miguel B.
    New, Mark
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2007, 22 (01) : 42 - 47
  • [2] A systematic review of published literature on mosquito control action thresholds across the world
    Aryaprema, Vindhya S.
    Steck, Madeline R.
    Peper, Steven T.
    Rui-de Xue
    Qualls, Whitney A.
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2023, 17 (03):
  • [3] Autochthonous dengue outbreak in Italy 2020: clinical, virological and entomological findings
    Barzon, Luisa
    Gobbi, Federico
    Capelli, Gioia
    Montarsi, Fabrizio
    Martini, Simone
    Riccetti, Silvia
    Sinigaglia, Alessandro
    Pacenti, Monia
    Pavan, Giacomina
    Rassu, Mario
    Padovan, Maria Teresa
    Manfrin, Vinicio
    Zanella, Francesca
    Russo, Francesca
    Foglia, Felice
    Lazzarini, Luca
    [J]. JOURNAL OF TRAVEL MEDICINE, 2021, 28 (08)
  • [4] Sampling strategy matters to accurately estimate response curves' parameters in species distribution models
    Bazzichetto, Manuele
    Lenoir, Jonathan
    Da Re, Daniele
    Tordoni, Enrico
    Rocchini, Duccio
    Malavasi, Marco
    Bartak, Vojtech
    Sperandii, Marta Gaia
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2023, 32 (10): : 1717 - 1729
  • [5] Becker N, 2010, MOSQUITOES AND THEIR CONTROL, SECOND EDITION, P3, DOI 10.1007/978-3-540-92874-4_1
  • [6] Boehmke B., 2019, Hands-on machine learning with R, 1 edn
  • [7] Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation
    Bonannella, Carmelo
    Hengl, Tomislav
    Parente, Leandro
    de Bruin, Sytze
    [J]. PEERJ, 2023, 11
  • [8] Forest tree species distribution for Europe 2000-2020: mapping potential and realized distributions using spatiotemporal machine learning
    Bonannella, Carmelo
    Hengl, Tomislav
    Heisig, Johannes
    Parente, Leandro
    Wright, Marvin N.
    Herold, Martin
    de Bruin, Sytze
    [J]. PEERJ, 2022, 10
  • [9] The first local cases of Zika virus in Europe
    Brady, Oliver J.
    Hay, Simon I.
    [J]. LANCET, 2019, 394 (10213) : 1991 - 1992
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32