Experimental Validation of Spectral Sensing Models for Identification of Signals by Means of Artificial Intelligence

被引:0
作者
Fokin, G.A. [1 ]
Volgushev, D.B. [1 ]
机构
[1] Bonch-Bruevich Saint Petersburg State University of Telecommunications, pr. Bol’shevikov 22, St Petersburg
来源
Russian Aeronautics | 2024年 / 67卷 / 04期
关键词
artificial intelligence; LTE signals identification; software-defined radio; spectral sensing;
D O I
10.3103/S1068799824040287
中图分类号
学科分类号
摘要
Abstract: The paper is devoted to experimental validation of spectral sensing models for determining the information on the structure of a target signal by a cognitive radio receiver based on a neural network approach. The operating procedure of the LTE signal capture and marking models is described when scanning the radio airwaves using the hardware of a software defined radio board and software tools of the MATLAB environment. Deep learning models of a neural network of semantic segmentation of spectrogram images are used to identify the LTE signals. © Allerton Press, Inc. 2024.
引用
收藏
页码:995 / 1010
页数:15
相关论文
共 13 条
[1]  
Ivanov A., Tonchev K., Poulkov V., Manolova A., Probabilistic Spectrum Sensing Based on Feature Detection for 6G Cognitive Radio: A Survey, IEEE Access, 9, pp. 116994-117026, (2021)
[2]  
Syed S.N., Lazaridis P., Khan F., Ahmed Q., Hafeez M., Ivanov A., Poulkov V., Zaharis Z.D., Deep Neural Networks for Spectrum Sensing: A Review, IEEE Access, 11, pp. 89591-89615, (2023)
[3]  
Alhazmi M.H., Alymani M., Alhazmi H., Almarhabi A., Samarkandi A., Yao Y.-D., 5G Signal Identification Using Deep Learning, Proc. of the 29Th Wireless and Optical Communications Conference (WOCC), May 1–, 2, (2020)
[4]  
Reims, France, pp, 1–6, (2020)
[5]  
Tekbiyik K., Akbunar &#X.006
[6]  
., Ekti A.R., Gorcin A., Kurt G.K., Qaraqe K.A., Spectrum Sensing and Signal Identification With Deep Learning Based on Spectral Correlation Function, IEEE Transactions on Vehicular Technology, 70, 10, pp. 10514-10527, (2021)
[7]  
Zhang M., Diao M., Guo L., Convolutional Neural Networks for Automatic Cognitive Radio Waveform Recognition, IEEE Access, 5, pp. 11074-11082, (2017)
[8]  
Bel'skii A.B., Esipovich O.A., Safoklov B.B., Experimental Testing of Using the Artificial Neural Networks in Diagnostic Systems for Assessing and Predicting the Technical Condition of Rotorcraft Units, Izv. Vuz. Av. Tekhnika, 67, 1, pp. 109-115, (2024)
[9]  
Furtat I.B., Zhukov Y., Korotkov E.B., Pryanichnikov R.A., Adaptive Neural Network Control of Space-Mission Universal Mechatronic Module, Izv. Vuz. Av. Tekhnika, 66, 3, pp. 41-50, (2023)
[10]  
St. Petersburg: SPbGETU “LETI”, 2024, no, 1, 79, pp. 174-177, (2024)