P-type redox-active organic materials as cathodes for dual-ion batteries : Principles and design strategies

被引:4
作者
Zhang, Miao [1 ,2 ]
Zhou, Ruiyuan [1 ,3 ]
Qin, Yingbo [1 ]
Zhong, Xuting [1 ]
Liu, Qingqing [1 ,2 ]
Han, Xiaoqi [2 ]
Zhang, Fan [2 ]
Ou, Xuewu [2 ]
Han, Jie [3 ]
Lee, Chun-Sing [4 ]
Tang, Yongbing [2 ]
机构
[1] Guangdong Univ Educ, Sch Chem & Mat Sci, Guangzhou 510303, Guangdong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Adv Energy Storage Technol Res Ctr, Shenzhen 518055, Guangdong, Peoples R China
[3] Nankai Univ, Coll Chem, State Key Lab Elemento Organ Chem, Tianjin 300071, Peoples R China
[4] City Univ Hong Kong, Ctr Superdiamond & Adv Film COSDAF, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
P-type redox-active organic materials; Cathodes; Dual-ion batteries; Principles; Design strategies; ANION INTERCALATION; RECENT PROGRESS; LITHIUM; PERFORMANCE; ELECTRODE; GRAPHITE; STORAGE; SODIUM; PHENOXAZINE; CHALLENGES;
D O I
10.1016/j.ensm.2024.103879
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dual-ion batteries with p-type redox-active organic materials as cathodes have potential application prospects in the field of energy storage. In this review, we will first introduce the basic anion storage concepts, principles, and characterization methods of organic cathode materials, and then introduce how to design high-performance ptype redox organic cathode materials from the perspectives of capacity, voltage, rate, and cycle-life, as well as the relationship between structure and performance. Next, the effects of solvent molecules and anion species in solute on the performance of p-type organic cathode-based dual-ion batteries will be discussed. Finally, we will share our conclusions and projections for the future research directions of this intriguing topic.
引用
收藏
页数:26
相关论文
共 189 条
[41]   Vanillin: An Effective Additive to Improve the Longevity of Zn Metal Anode in a 30 m ZnCl2 Electrolyte [J].
Hoang, David ;
Li, Yaqiong ;
Jung, Min Soo ;
Sandstrom, Sean K. ;
Scida, Alexis M. ;
Jiang, Heng ;
Gallagher, Trenton C. ;
Pollard, Brenden A. ;
Jensen, Rachel ;
Chiu, Nan-Chieh ;
Stylianou, Kyriakos ;
Stickle, William F. ;
Greaney, P. Alex ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2023, 13 (42)
[42]  
Hodoroaba VD, 2020, MICRO NANO TECHNOL, P397, DOI 10.1016/B978-0-12-814182-3.00021-3
[43]   Multi-electron bipolar-type organic molecules for high-capacity dual-ion zinc batteries [J].
Hu, Chengmin ;
Yang, Xiaozhe ;
Liu, Pingxuan ;
Song, Ziyang ;
Lv, Yaokang ;
Miao, Ling ;
Liu, Mingxian ;
Gan, Lihua .
JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (20) :11867-11874
[44]   Recent advances in organic cathodes for dual-ion batteries [J].
Hu, Wenli ;
Zhang, Weisheng ;
Zhang, Chenxing ;
Li, Chengqiu ;
Mei, Shilin ;
Yao, Chang-Jiang .
SCIENCE CHINA-CHEMISTRY, 2024, 67 (12) :4014-4036
[45]   Spiro-based triphenylamine molecule with steric structure as a cathode material for high-stable all organic lithium dual-ion batteries [J].
Huang, Liya ;
Yu, Zehao ;
Wang, Liubin ;
Qin, Bin ;
Cai, Fengshi ;
Yuan, Zhihao ;
Luo, Zhiqiang .
JOURNAL OF ENERGY CHEMISTRY, 2023, 83 :24-31
[46]   Dihydrophenazine-Derived Redox Polymer from Industrial By-Product as Lithium-ion Battery Cathode Material [J].
Huang, Yuanzhu ;
Li, Zhen ;
Hua, Ying ;
Wang, Yujie ;
Wang, Bo ;
Du, Ya ;
Yang, Haishen .
CHEMISTRYSELECT, 2022, 7 (11)
[47]   A dual-ion battery has two sides: the effect of ion-pairs [J].
Huang, Yuhao ;
Liang, Zhaohui ;
Wang, Hongyu .
CHEMICAL COMMUNICATIONS, 2020, 56 (69) :10070-10073
[48]   Anion chemistry in energy storage devices [J].
Huang, Zhaodong ;
Li, Xinliang ;
Chen, Ze ;
Li, Pei ;
Ji, Xiulei ;
Zhi, Chunyi .
NATURE REVIEWS CHEMISTRY, 2023, 7 (09) :616-631
[49]  
Huang ZD, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23369-5
[50]   3-V class Mg-based dual-ion battery with astonishingly high energy/power densities in common electrolytes [J].
Ikhe, Amol Bhairuba ;
Seo, Jung Yong ;
Park, Woon Bae ;
Lee, Jin-Woong ;
Sohn, Kee-Sun ;
Pyo, Myoungho .
JOURNAL OF POWER SOURCES, 2021, 506