An enhanced Bayesian approach for damage identification utilizing prior knowledge from refined elemental modal strain energy ratios

被引:0
作者
Chen, Li [1 ,2 ]
Chen, Hui [2 ,3 ]
Liu, Lu-ling [2 ]
机构
[1] Wuhan Inst Technol, Sch Comp Sci & Engn Artificial Intelligence, Wuhan 430205, Peoples R China
[2] Wuhan Inst Technol, Coll Post & Telecommun, Wuhan 430073, Peoples R China
[3] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Damage identification; Bayesian; Modal strain energy ratio; Sparse prior; UPDATING MODELS; UNCERTAINTIES;
D O I
10.1038/s41598-024-84315-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study proposes a novel Bayesian damage identification method that uses an Improved Elemental Modal Strain Energy Ratio (IEMSER) to guide a sparse prior distribution. Measured frequencies and mode shapes develop the IEMSER indicator for preliminary damage assessment, forming the basis for a sparse prior distribution. Using the sparse prior and initial damage estimates, Markov Chain Monte Carlo (MCMC) sampling computes the posterior Probability Density Functions (PDFs) of damage parameters to determine the Maximum A Posteriori (MAP) estimates. The proposed method better utilizes the advantages of prior information in the Bayesian method, making the identified damage more accurate. A numerical case of a steel truss bridge shows that IEMSER's preliminary damage estimates closely match actual damage, yielding a reliable sparse prior and significantly improving identification accuracy. The method's effectiveness is further validated using modal test data from an 18-story frame structure, confirming its applicability to real structures.
引用
收藏
页数:17
相关论文
共 24 条
  • [1] Updating models and their uncertainties. I: Bayesian statistical framework
    Beck, JL
    Katafygiotis, LS
    [J]. JOURNAL OF ENGINEERING MECHANICS, 1998, 124 (04) : 455 - 461
  • [2] Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian finite element model updating
    Behmanesh, Iman
    Moaveni, Babak
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2015, 22 (03) : 463 - 483
  • [3] An efficient Bayesian method with intrusive homotopy surrogate model for stochastic model updating
    Chen, Hui
    Huang, Bin
    Zhang, Heng
    Xue, Kaiyi
    Sun, Ming
    Wu, Zhifeng
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (16) : 2500 - 2516
  • [4] Dong XJ, 2019, COMPUTING IN CIVIL ENGINEERING 2019: SMART CITIES, SUSTAINABILITY, AND RESILIENCE, P397
  • [5] Sparse Bayesian learning for damage identification using nonlinear models: Application to weld fractures of steel-frame buildings
    Filippitzis, Filippos
    Kohler, Monica D.
    Heaton, Thomas H.
    Beck, James L.
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (02)
  • [6] MODEL-REDUCTION USING DYNAMIC AND ITERATED IRS TECHNIQUES
    FRISWELL, MI
    GARVEY, SD
    PENNY, JET
    [J]. JOURNAL OF SOUND AND VIBRATION, 1995, 186 (02) : 311 - 323
  • [7] Finite element model updating and damage identification using semi-rigidly connected frame element and optimization procedure: An experimental validation
    Ghannadi, Parsa
    Khatir, Samir
    Kourehli, Seyed Sina
    Nguyen, Andy
    Boutchicha, Djilali
    Wahab, Magd Abdel
    [J]. STRUCTURES, 2023, 50 : 1173 - 1190
  • [8] Data-driven method of damage detection using sparse sensors installation by SEREPa
    Ghannadi, Parsa
    Kourehli, Seyed Sina
    [J]. JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2019, 9 (04) : 459 - 475
  • [9] Structural Multi-Damage Identification Based on Modal Strain Energy Equivalence Index Method
    Guo, Hui Yong
    Li, Zheng Liang
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2014, 14 (07)
  • [10] DRAM: Efficient adaptive MCMC
    Haario, Heikki
    Laine, Marko
    Mira, Antonietta
    Saksman, Eero
    [J]. STATISTICS AND COMPUTING, 2006, 16 (04) : 339 - 354