A-Davis-Wielandt Radius Bounds of Semi-Hilbertian Space Operators

被引:3
作者
Guesba, Messaoud [1 ]
Barik, Somdatta [2 ]
Bhunia, Pintu [3 ]
Paul, Kallol [2 ]
机构
[1] El Oued Univ, Fac Exact Sci, Dept Math, El Oued 39000, Algeria
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
[3] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Positive operator; Semi-inner product; A-Davis-Wielandt radius; Seminorm; NUMERICAL RADIUS; INEQUALITIES;
D O I
10.1007/s41980-024-00926-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is a complex Hilbert space and A is a positive operator on H.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}.$$\end{document} The mapping <<middle dot>,<middle dot>> A:HxH -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \cdot ,\cdot \rangle _A: {\mathcal {H}}\times {\mathcal {H}} \rightarrow {\mathbb {C}}$$\end{document}, defined as y,zA=Ay,z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle y,z\right\rangle _{A}=\left\langle Ay,z\right\rangle $$\end{document} for all y, z is an element of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, induces a seminorm <middle dot>A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\| \cdot \right\| _{A}$$\end{document}. The A-Davis-Wielandt radius of an operator S on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is defined as d omega AS=supSz,zA2+SzA4:zA=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\omega _{A}\left( S\right) =\sup \left\{ \sqrt{\left| \left\langle Sz,z\right\rangle _{A}\right| <^>{2}+\left\| Sz\right\| _{A}<^>{4}} :\left\| z\right\| _{A}=1\right\} .$$\end{document} We investigate some new bounds for d omega AS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\omega _{A}\left( S\right) $$\end{document} which refine the existing bounds. We also give some bounds for the 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} off-diagonal block matrices.
引用
收藏
页数:21
相关论文
共 31 条
[1]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[2]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[3]   ON GENERALIZED DAVIS-WIELANDT RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS [J].
Bhanja, Aniket ;
Bhunia, Pintu ;
Paul, Kallol .
OPERATORS AND MATRICES, 2021, 15 (04) :1201-1225
[4]   Berezin number and Berezin norm inequalities for operator matrices [J].
Bhunia, Pintu ;
Sen, Anirban ;
Barik, Somdatta ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16) :2749-2768
[5]   On the Davis-Wielandt shell of an operator and the Davis-Wielandt index of a normed linear space [J].
Bhunia, Pintu ;
Sain, Debmalya ;
Paul, Kallol .
COLLECTANEA MATHEMATICA, 2022, 73 (03) :521-533
[6]   New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators [J].
Bhunia, Pintu ;
Bhanja, Aniket ;
Paul, Kallol .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :3523-3539
[7]   Bounds for the Davis-Wielandt radius of bounded linear operators [J].
Bhunia, Pintu ;
Bhanja, Aniket ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
[8]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[9]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511
[10]   On A-numerical radius inequalities for 2 x 2 operator matrices [J].
Chandra Rout, Nirmal ;
Sahoo, Satyajit ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14) :2672-2692