A-Davis-Wielandt Radius Bounds of Semi-Hilbertian Space Operators

被引:0
作者
Guesba, Messaoud [1 ]
Barik, Somdatta [2 ]
Bhunia, Pintu [3 ]
Paul, Kallol [2 ]
机构
[1] El Oued Univ, Fac Exact Sci, Dept Math, El Oued 39000, Algeria
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
[3] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Positive operator; Semi-inner product; <italic>A</italic>-Davis-Wielandt radius; Seminorm; NUMERICAL RADIUS; INEQUALITIES;
D O I
10.1007/s41980-024-00926-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is a complex Hilbert space and A is a positive operator on H.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}.$$\end{document} The mapping <<middle dot>,<middle dot>> A:HxH -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \cdot ,\cdot \rangle _A: {\mathcal {H}}\times {\mathcal {H}} \rightarrow {\mathbb {C}}$$\end{document}, defined as y,zA=Ay,z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle y,z\right\rangle _{A}=\left\langle Ay,z\right\rangle $$\end{document} for all y, z is an element of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, induces a seminorm <middle dot>A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\| \cdot \right\| _{A}$$\end{document}. The A-Davis-Wielandt radius of an operator S on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is defined as d omega AS=supSz,zA2+SzA4:zA=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\omega _{A}\left( S\right) =\sup \left\{ \sqrt{\left| \left\langle Sz,z\right\rangle _{A}\right| <^>{2}+\left\| Sz\right\| _{A}<^>{4}} :\left\| z\right\| _{A}=1\right\} .$$\end{document} We investigate some new bounds for d omega AS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\omega _{A}\left( S\right) $$\end{document} which refine the existing bounds. We also give some bounds for the 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} off-diagonal block matrices.
引用
收藏
页数:21
相关论文
共 31 条
  • [1] Metric properties of projections in semi-Hilbertian spaces
    Arias, M. Laura
    Corach, Gustavo
    Gonzalez, M. Celeste
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) : 11 - 28
  • [2] Partial isometries in semi-Hilbertian spaces
    Arias, M. Laura
    Corach, Gustavo
    Gonzalez, M. Celeste
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1460 - 1475
  • [3] ON GENERALIZED DAVIS-WIELANDT RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS
    Bhanja, Aniket
    Bhunia, Pintu
    Paul, Kallol
    [J]. OPERATORS AND MATRICES, 2021, 15 (04): : 1201 - 1225
  • [4] Berezin number and Berezin norm inequalities for operator matrices
    Bhunia, Pintu
    Sen, Anirban
    Barik, Somdatta
    Paul, Kallol
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16) : 2749 - 2768
  • [5] On the Davis-Wielandt shell of an operator and the Davis-Wielandt index of a normed linear space
    Bhunia, Pintu
    Sain, Debmalya
    Paul, Kallol
    [J]. COLLECTANEA MATHEMATICA, 2022, 73 (03) : 521 - 533
  • [6] New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators
    Bhunia, Pintu
    Bhanja, Aniket
    Paul, Kallol
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3523 - 3539
  • [7] Bounds for the Davis-Wielandt radius of bounded linear operators
    Bhunia, Pintu
    Bhanja, Aniket
    Bag, Santanu
    Paul, Kallol
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
  • [8] Bhunia P, 2020, ELECTRON J LINEAR AL, V36
  • [9] Refinements of A-numerical radius inequalities and their applications
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    [J]. ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1498 - 1511
  • [10] On A-numerical radius inequalities for 2 x 2 operator matrices
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14) : 2672 - 2692