Characterizing heterogeneity in Alzheimer's disease progression: a semiparametric model

被引:0
作者
Gelir, Fatih [1 ]
Chatla, Suneel Babu [2 ]
Bhuiyan, Md. Shenuarin [3 ,9 ]
Disbrow, Elizabeth A. [4 ,5 ,6 ,7 ]
Conrad, Steven A. [1 ,8 ]
Vanchiere, John A. [8 ]
Kevil, Christopher G. [3 ,9 ]
Gecili, Emrah [10 ,11 ]
Bhuiyan, Mohammad Alfrad Nobel [1 ,3 ,5 ]
机构
[1] Louisiana State Univ, Dept Med, Div Clin Informat, Hlth Sci Ctr Shreveport, POB 33932, Shreveport, LA 71130 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[3] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Pathol & Translat Pathobiol, Shreveport, LA 71103 USA
[4] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Pharmacol Toxicol & Neurosci, Shreveport, LA 71103 USA
[5] Louisiana State Univ, Hlth Sci Ctr Shreveport, Ctr Brain Hlth, Shreveport, LA 71103 USA
[6] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Neurol, Shreveport, LA 71103 USA
[7] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Psychiat, Shreveport, LA 71103 USA
[8] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Pediat, Shreveport, LA 71103 USA
[9] Louisiana State Univ, Hlth Sci Ctr Shreveport, Dept Mol & Cellular Physiol, Shreveport, LA 71103 USA
[10] Cincinnati Childrens Hosp Med Ctr, Div Biostat & Epidemiol, Cincinnati, OH 45229 USA
[11] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45267 USA
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; Semiparametric modeling; Splines; ADAS13; Ventricular volumes; Cognitive decline; Neurodegeneration; ADNI database;
D O I
10.1038/s41598-025-92540-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The progression of Alzheimer's disease (AD), a leading cause of dementia worldwide, is known for its variability and complexity, challenging the conventional methods of monitoring and predicting disease trajectories. This study introduces a semiparametric modeling approach to analyze longitudinal cognitive and imaging data. We studied two different outcome variables from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database: the Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS13) scores and ventricular volumes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\text{mm}}<^>{3})$$\end{document}. Unlike traditional linear mixed effects models, semiparametric models do not assume a linear AD progression over time. Semiparametric models offer the advantage of capturing the non-linear features of AD progression, such as cognitive decline and neurodegeneration, represented by changes in ADAS13 scores and ventricular enlargement, respectively. By integrating regression splines and mixed modeling techniques, we provide a nuanced understanding of AD progression that captures the heterogeneity of disease trajectories. Our analysis reveals variations in the timing and degree of cognitive decline and neurodegeneration among AD patients, underlining the need for personalized approaches for monitoring and managing AD. This study's findings contribute to the modeling of AD progression and offer potential implications for interventions and prognostic assessments in clinical and research settings.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] Changes in cognition
    Albert, Marilyn S.
    [J]. NEUROBIOLOGY OF AGING, 2011, 32 : S58 - S63
  • [2] 2018 Alzheimer's disease facts and figures
    不详
    [J]. ALZHEIMERS & DEMENTIA, 2018, 14 (03) : 367 - 425
  • [3] Fully-Automated Quantification of Regional Brain Volumes for Improved Detection of Focal Atrophy in Alzheimer Disease
    Brewer, J. B.
    Magda, S.
    Airriess, C.
    Smith, M. E.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2009, 30 (03) : 578 - 580
  • [4] Detection of emerging neurodegeneration using Bayesian linear mixed-effect modeling
    Cobigo, Yann
    Goh, Matthew S.
    Wolf, Amy
    Staffaroni, Adam M.
    Kornak, John
    Miller, Bruce L.
    Rabinovici, Gil D.
    Seeley, William W.
    Spina, Salvatore
    Boxer, Adam L.
    Boeve, Bradley F.
    Wang, Lei
    Allegri, Ricardo
    Farlow, Marty
    Mori, Hiroshi
    Perrin, Richard J.
    Kramer, Joel
    Rosen, Howard J.
    [J]. NEUROIMAGE-CLINICAL, 2022, 36
  • [5] Diggle P., 2002, Analysis of Longitudinal Data, DOI [10.1093/oso/9780198524847.001.0001, DOI 10.1093/OSO/9780198524847.001.0001]
  • [6] Predicting Progression of Alzheimer's Disease Using Ordinal Regression
    Doyle, Orla M.
    Westman, Eric
    Marquand, Andre F.
    Mecocci, Patrizia
    Vellas, Bruno
    Tsolaki, Magda
    Kloszewska, Iwona
    Soininen, Hilkka
    Lovestone, Simon
    Williams, Steve C. R.
    Simmons, Andrew
    [J]. PLOS ONE, 2014, 9 (08):
  • [7] Use of spline regression in an analysis of maternal prepregnancy body mass index and adverse birth outcomes: Does it tell us more than we already know?
    Gilboa, Suzanne M.
    Correa, Adolfo
    Alverson, Clinton J.
    [J]. ANNALS OF EPIDEMIOLOGY, 2008, 18 (03) : 196 - 205
  • [8] Instantiated mixed effects modeling of Alzheimer's disease markers
    Guerrero, R.
    Schmidt-Richberg, A.
    Ledig, C.
    Tong, T.
    Wolz, R.
    Rueckert, D.
    [J]. NEUROIMAGE, 2016, 142 : 113 - 125
  • [9] Predicting the course of Alzheimer’s progression
    Iddi S.
    Li D.
    Aisen P.S.
    Rafii M.S.
    Thompson W.K.
    Donohue M.C.
    [J]. Brain Informatics, 2019, 6 (01)
  • [10] International D., World Alzheimer Report 2018-The state of the art of dementia research: New frontiers