Resistance exercise training improves disuse-induced skeletal muscle atrophy in humans: a meta-analysis of randomized controlled trials

被引:0
|
作者
Guo, Xian [1 ,2 ]
Zhou, Yanbing [3 ]
Li, Xinxin [1 ]
Mu, Jinhao [1 ]
机构
[1] Beijing Sport Univ, Sport Sci Sch, Beijing 100084, Peoples R China
[2] Beijing Sports Nutr Engn Res Ctr, Beijing 100084, Peoples R China
[3] Univ Texas Austin, Dept Kinesiol & Hlth Educ, Austin, TX 78712 USA
关键词
Resistance exercise training; Simulated weightlessness; Muscle atrophy; Bed rest; BED-REST; KNEE EXTENSOR; STRENGTH; SIZE;
D O I
10.1186/s12891-025-08384-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
BackgroundThis meta-analysis aimed to determine whether resistance exercise training (RET) can attenuate the loss of muscle volume and function in anti-gravitational muscles, especially quadriceps and calf muscles, during immobilization/disuse conditions. MethodsA comprehensive literature search was conducted to identify randomized controlled trials comparing RET vs. no exercise during immobilization/disuse. Searches were conducted in databases including Web of Science, PubMed, EBOSCO, and Cochrane Library, without imposing a time limit until 20 March, 2023. Studies reporting outcomes related to muscle volume, MVC, peak power, concentric peak force, eccentric peak force, isometric MVC torque of knee extension, isometric MVC torque of knee flexion were included. Data were pooled using random-effects models. ResultsEleven randomized controlled trials were finally included. RET elicited substantial benefits for preserving quadriceps muscle volume (n = 5, MD = 252.56, 95% CI = 151.92, 353.21, p < 0.001). RET demonstrated a statistically significant preventive effect on the reduction of MVC in both quadriceps (n = 4, MD = 338.59, 95% CI = 247.49, 429.69, p < 0.001) and calf muscles (n = 3, MD = 478.59, 95% CI = 160.42, 796.77, p < 0.01). Peak power of quadriceps muscles (n = 4, MD = 166.08, 95% CI = 28.44, 303.73, p < 0.05) and calf muscles (n = 2, MD = 176.58, 95% CI = 102.36, 250.79, p < 0.001) were elevated after RET intervention. RET significantly ameliorated the weakening of both concentric and eccentric peak force in quadriceps (concentric: n = 2, MD = 470.95, 95% CI = 355.45, 586.44, p < 0.001; eccentric: n = 1, MD = 351.51, 95% CI = 254.43, 448.58, p < 0.001) and calf muscles (concentric: n = 2, MD = 867.52, 95% CI = 548.18, 1186.86, p < 0.001; eccentric: n = 1, MD = 899.86, 95% CI = 558.17, 1241.55, p < 0.001). Additionally, the diminishing of isometric MVC torques of knee extension (n = 6, MD = 41.85, 95% CI = 20.93, 62.77, p < 0.001) and knee flexion (n = 4, MD = 13.20, 95% CI = 8.12, 18.77, p < 0.001) were enhanced significantly after RET intervention. ConclusionsRET effectively minimized deterioration of muscle volume and muscle function during immobilization/disuse, particularly in anti-gravitational muscles. RET should be recommended to maintain muscle and neuromuscular health for spaceflight, bed rest, immobilization/disuse conditions. Further research is needed to explore the effects of RET in more diverse populations and under various disuse conditions. More high-quality research will be required to demonstrate the aforementioned benefits conclusively.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy
    Nicastro, H.
    Zanchi, N. E.
    da Luz, C. R.
    Lancha, A. H., Jr.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2011, 44 (11) : 1070 - 1079
  • [2] Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure
    McKendry, James
    Coletta, Giulia
    Nunes, Everson A.
    Lim, Changhyun
    Phillips, Stuart M.
    EXPERIMENTAL PHYSIOLOGY, 2024, 109 (10) : 1650 - 1662
  • [3] Mitochondrial Autophagy In Disuse-induced Skeletal Muscle Atrophy
    Kang, Choung-Hun
    Yeo, Dongwook
    Ji, Li Li
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (05): : 357 - 357
  • [4] ROLE OF GELATINASES IN DISUSE-INDUCED SKELETAL MUSCLE ATROPHY
    Liu, Xuhui
    Lee, David J.
    Skittone, Laura K.
    Natsuhara, Kyle
    Kim, Hubert T.
    MUSCLE & NERVE, 2010, 41 (02) : 174 - 178
  • [5] The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle
    Sayed, Ramy K. A.
    Hibbert, Jamie E.
    Jorgenson, Kent W.
    Hornberger, Troy A.
    CELLS, 2023, 12 (24)
  • [6] Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy
    Bodine, Sue C.
    EXPERIMENTAL NEUROLOGY, 2013, 248 : 129 - 135
  • [7] Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans
    Deane, Colleen S.
    Willis, Craig R. G.
    Phillips, Bethan E.
    Atherton, Philip J.
    Harries, Lorna W.
    Ames, Ryan M.
    Szewczyk, Nathaniel J.
    Etheridge, Timothy
    JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2021, 12 (03) : 629 - 645
  • [8] Determinants of disuse-induced skeletal muscle atrophy: Exercise and nutrition countermeasures to prevent protein loss
    Bajotto, Gustavo
    Shimomura, Yoshiharu
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 2006, 52 (04) : 233 - 247
  • [9] Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies
    Nunes, Everson A.
    Stokes, Tanner
    McKendry, James
    Currier, Brad S.
    Phillips, Stuart M.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2022, 322 (06): : C1068 - C1084
  • [10] Hyperglycemia Inhibits Recovery From Disuse-Induced Skeletal Muscle Atrophy in Rats
    Kataoka, H.
    Nakano, J.
    Morimoto, Y.
    Honda, Y.
    Sakamoto, J.
    Origuchi, T.
    Okita, M.
    Yoshimura, T.
    PHYSIOLOGICAL RESEARCH, 2014, 63 (04) : 465 - 474