Deep Learning-Based Channel Extrapolation for 5G Advanced Massive MIMO: Hardware Prototype and Experimental Evaluation

被引:0
作者
Li, Hongyao [1 ,2 ]
Wang, Mingjin [3 ,4 ]
Han, Runyu [5 ]
Wang, Ning [5 ]
Wu, Huihui [3 ,4 ]
Gu, Yuantao [2 ]
Yuan, Wanmai [6 ]
Gao, Feifei [3 ,4 ]
机构
[1] PLA Rocket Force Univ Engn, Dept Engn Control Sci & Engn, Xian 710025, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Artificial Intelligence, Dept Automat, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRist, Beijing 100084, Peoples R China
[5] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
[6] China Elect Technol Grp Corp CETC, Informat Sci Acad, Beijing 100041, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Antennas; OFDM; Massive MIMO; Extrapolation; Channel estimation; Vectors; Receiving antennas; Antenna measurements; Interpolation; 3GPP; 5G advanced; massive MIMO; channel extrapolation; MIMO prototype; NETWORKS; SELECTION;
D O I
10.1109/TWC.2024.3446633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the deep learning (DL) based channel extrapolation problem and conduct the over-the-air (OTA) antenna extrapolation and frequency channel interpolation test for the 3rd generation partnership project (3GPP) long-term evolution (LTE) time-division duplex (TDD)-like orthogonal frequency division multiplexing (OFDM) massive MIMO prototype. We first present measurement campaigns using universal software radio peripherals (USRP) at 3.5 GHz, where the base station (BS) is composed of a 64-element antenna array. A DL-based antenna extrapolation network is then designed to approximate the inner deterministic function among antennas from the attained channel data within the "training" pilots. We present an antenna selection network (ASN) that can select a limited number of antennas for the best extrapolation, which outperforms the uniform antenna selection in terms of channel reconstruction and signal detection. We also design a deep residual neural network for channel interpolation. The performance of the extrapolated channel is evaluated in terms of normalized mean squared error (NMSE) in comparison to the measured channels on all antenna ports or the full pilot-aided channels in all OFDM subcarriers. Experimental results show that ASN can reduce an average of 87.5% antenna ports and maintain channel estimation NMSE by 10(-2) when compared to 3GPP channel estimation protocols.
引用
收藏
页码:1756 / 1771
页数:16
相关论文
共 33 条
  • [1] Joint Spatial Division and Multiplexing for mm-Wave Channels
    Adhikary, Ansuman
    Al Safadi, Ebrahim
    Samimi, Mathew K.
    Wang, Rui
    Caire, Giuseppe
    Rappaport, Theodore S.
    Molisch, Andreas F.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) : 1239 - 1255
  • [2] Alrabeiah M, 2019, CONF REC ASILOMAR C, P1465, DOI [10.1109/IEEECONF44664.2019.9048929, 10.1109/ieeeconf44664.2019.9048929]
  • [3] What Will 5G Be?
    Andrews, Jeffrey G.
    Buzzi, Stefano
    Choi, Wan
    Hanly, Stephen V.
    Lozano, Angel
    Soong, Anthony C. K.
    Zhang, Jianzhong Charlie
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) : 1065 - 1082
  • [4] Channel Extrapolation for FDD Massive MIMO: Procedure and Experimental Results
    Choi, Thomas
    Rottenberg, Francois
    Gomez-Ponce, Jorge
    Ramesh, Akshay
    Luo, Peng
    Zhang, Jianzhong
    Molisch, Andreas F.
    [J]. 2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [5] Dormand John R, 1980, Journal of Computational and Applied Mathematics, V6, P19, DOI [DOI 10.1016/0771-050X(80)90013-3, 10.1016/0771-050X(80)90013-3]
  • [6] Duchi J, 2011, J MACH LEARN RES, V12, P2121
  • [7] Evolved Universal Terrestrial Radio Access (E-UTRA), 2022, documentTS36.211V17.2.0
  • [8] Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 852 - 855
  • [9] An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems
    Heath, Robert W., Jr.
    Gonzalez-Prelcic, Nuria
    Rangan, Sundeep
    Roh, Wonil
    Sayeed, Akbar M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) : 436 - 453
  • [10] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366