Classification of salivary gland biopsies in Sjögren's syndrome by a convolutional neural network using an auto-machine learning platform

被引:0
作者
Troncoso, Jorge Alvarez [1 ,6 ]
Ruiz-Bravo, Elena [2 ]
Abanades, Clara Soto [1 ,6 ]
Dumusc, Alexandre [3 ,4 ]
Lopez-Janeiro, Alvaro [5 ]
Hugle, Thomas [3 ,4 ]
机构
[1] Hosp Univ La Paz, Syst Autoimmune Dis Unit, Madrid, Spain
[2] Hosp Univ La Paz, Pathol Dept, Madrid, Spain
[3] Lausanne Univ Hosp CHUV, Dept Rheumatol, Lausanne, Switzerland
[4] Univ Lausanne, Lausanne, Switzerland
[5] Clin Univ Navarra, Pathol Dept, Pamplona, Spain
[6] Hosp Univ La Paz, Serv Med Interna, Paseo Castellana 261, Madrid 28046, Spain
关键词
Artificial intelligence; Salivary gland biopsy; Sj & ouml; gren; Sicca; ARTIFICIAL-INTELLIGENCE; SJOGRENS-SYNDROME;
D O I
10.1186/s41927-024-00417-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundThe histopathological analysis of minor salivary gland biopsies, particularly through the quantification of the Focus Score (FS), is pivotal in the diagnostic workflow for Sj & ouml;gren's Syndrome (SS). AI-based image recognition using deep learning models has demonstrated potential in enhancing diagnostic accuracy and efficiency in preclinical research.ObjectivesThe primary aim of this investigation was to utilize an auto-machine learning (autoML) platform for the automated segmentation and quantification of FS on histopathological slides, aiming to augment diagnostic precision and speed in SS.MethodsA cohort comprising 86 patients with sicca syndrome (37 diagnosed with SS based on the 2016 ACR/EULAR Classification Criteria and 49 non-SS) was selected for an in-depth histological examination. A repository of 172 slides (two per patient) was assembled, encompassing 74 slides meeting the classificatory thresholds for SS (FS >= 1, indicative of lymphocytic infiltration) and 98 slides showcasing normal salivary gland histology. The autoML platform utilized (Giotto, L2F, Lausanne Switzerland) employed a Convolutional Neural Network (CNN) architecture (ResNet-152) for the training and validation phases, using a dataset of 172 slides.ResultsThe developed model exhibited a reliability score of 0.88, proficiently distinguishing SS cases, with a sensitivity of 89.47% (95% CI: 66.86% to 98.70%) and a specificity of 88.24% (95% CI: 63.56% to 98.54%). The model found histological slides of suboptimal quality (e.g., those compromised during fixation or staining processes) to be the most challenging for accurate classification.ConclusionAutoML platforms offer a rapid and flexible approach to developing machine learning models, even with smaller datasets, as demonstrated in this study for SS. These platforms hold significant potential for enhancing diagnostic precision and efficiency in both clinical and research settings. Multicentric studies with larger patient cohorts are essential for thorough evaluation and validation of this innovative diagnostic approach. Histopathological analysis of minor salivary gland biopsies, especially the quantification of the Focus Score (FS), is crucial for the diagnostic workflow in Sj & ouml;gren's Syndrome (SS).- AI-based image recognition and deep learning models have shown promise in enhancing diagnostic workflows and have potential applications in preclinical research- This study utilizes an auto-machine learning (autoML) platform for automated delineation and quantification of FS on histopathological slides, aiming to improve diagnostic precision and speed in SS.- Offers a potential solution to mitigate the challenge of interobserver variability in FS assessment, thus strengthening the diagnostic criteria and potentially improving diagnostic accuracy in SS.- The flexibility and agility of autoML platforms like Giotto could expedite the diagnostic process, presenting a viable tool for clinicians and researchers, even with smaller datasets.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Prevalence and comorbidities of Sjogren's syndrome patients in the Community of Madrid: A population-based cross-sectional study [J].
Barrio-Cortes, Jaime ;
Lopez-Rodriguez, Juan Antonio ;
Gomez-Gascon, Tomas ;
Rayo-Gomez, Angeles ;
del Cura-Gonzalez, Isabel ;
Dominguez-Berjon, Felicitas ;
Esteban-Vasallo, Dolores ;
Chalco-Orrego, Juan Pablo ;
Vicente-Rabaneda, Esther ;
Baldini, Chiara ;
Seghieri, Chiara ;
Goules, Andreas ;
Fotiadis, Dimitrios I. ;
Tzioufas, Athanasios G. .
JOINT BONE SPINE, 2023, 90 (04)
[2]   DEEP LEARNING ACCURATELY PREDICTS FOCUS SCORE AND DIAGNOSIS OF PRIMARY SJOGREN SYNDROME USING LABIAL SALIVARY GLAND BIOPSIES [J].
Basseto, L. ;
Duquesne, J. ;
Bouget, V. ;
Barnes, M. ;
Pontarini, E. ;
Gallagher-Syed, A. ;
Bombardieri, M. ;
Fisher, B. ;
Nayar, S. ;
Adam, C. ;
Lazure, T. ;
Mariette, X. ;
Bitoun, S. .
ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 :152-153
[3]   Minor salivary gland biopsy: Its role in the classification and prognosis of Sjogren's syndrome [J].
Bautista-Vargas, Mario ;
Vivas, Alvaro J. ;
Tobon, Gabriel J. .
AUTOIMMUNITY REVIEWS, 2020, 19 (12)
[4]   Sjogren syndrome [J].
Brito-Zeron, Pilar ;
Retamozo, Soledad ;
Ramos-Casals, Manuel .
MEDICINA CLINICA, 2023, 160 (04) :163-171
[5]   Sjogren syndrome [J].
Brito-Zeron, Pilar ;
Baldini, Chiara ;
Bootsma, Hendrika ;
Bowman, Simon J. ;
Jonsson, Roland ;
Mariette, Xavier ;
Sivils, Kathy ;
Theander, Elke ;
Tzioufas, Athanasios ;
Ramos-Casals, Manuel .
NATURE REVIEWS DISEASE PRIMERS, 2016, 2
[6]   Use of a smart lip holder for minimally invasive minor salivary gland biopsy [J].
Dumusc, Alexandre ;
Bannert, Bettina ;
Kollert, Florian ;
Alvarez-Troncoso, Jorge ;
Huegle, Thomas .
BMJ INNOVATIONS, 2021, 7 (02) :445-447
[7]   Accuracy of minor salivary gland biopsy in the diagnosis of Sjögren syndrome [J].
Edelstein, R. ;
Kilipiris, G. E. ;
Machalekova, K. ;
Mouzalini, E. ;
Slobodianuk, A. ;
Javorka, V .
BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, 2021, 122 (07) :454-460
[8]   Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study [J].
Faes, Livia ;
Wagner, Siegfried K. ;
Fu, Dun Jack ;
Liu, Xiaoxuan ;
Korot, Edward ;
Ledsam, Joseph R. ;
Back, Trevor ;
Chopra, Reena ;
Pontikos, Nikolas ;
Kern, Christoph ;
Moraes, Gabriella ;
Schmid, Martin K. ;
Sim, Dawn ;
Balaskas, Konstantinos ;
Bachmann, Lucas M. ;
Denniston, Alastair K. ;
Keane, Pearse A. .
LANCET DIGITAL HEALTH, 2019, 1 (05) :E232-E242
[9]   Diagnostic value of labial minor salivary gland biopsy for Sjogren's syndrome: A systematic review [J].
Guellec, Dewi ;
Cornec, Divi ;
Jousse-Joulin, Sandrine ;
Marhadour, Thierry ;
Marcorelles, Pascale ;
Pers, Jacques-Olivier ;
Saraux, Alain ;
Devauchelle-Pensec, Valerie .
AUTOIMMUNITY REVIEWS, 2013, 12 (03) :416-420
[10]   Resolving challenges in deep learning-based analyses of histopathological images using explanation methods [J].
Hagele, Miriam ;
Seegerer, Philipp ;
Lapuschkin, Sebastian ;
Bockmayr, Michael ;
Samek, Wojciech ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Binder, Alexander .
SCIENTIFIC REPORTS, 2020, 10 (01)