GABA mitigates mitochondrial apoptosis induced by high temperature stress in the Pacific oyster (Crassostrea gigas)

被引:0
作者
Liu, Ranyang [1 ,3 ,4 ]
Zhang, Xueshu [2 ,3 ,4 ]
Gao, Lei [2 ,3 ,4 ]
Li, Qingsong [3 ,4 ]
Xing, Zhen [3 ,4 ]
Zhang, Ziyang [3 ,4 ]
Wang, Lingling [1 ,2 ,3 ,4 ]
Song, Linsheng [1 ,2 ,3 ,4 ]
机构
[1] Liaoning Normal Univ, Coll Life Sci, Dalian 116029, Liaoning, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266235, Peoples R China
[3] Dalian Ocean Univ, Liaoning Key Lab Marine Anim Immunol & Dis Control, Dalian 116023, Peoples R China
[4] Dalian Ocean Univ, Dalian Key Lab Aquat Anim Dis Prevent & Control, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Crassostrea gigas; High temperature; GABA; Apoptosis; GLUTAMIC-ACID DECARBOXYLASE; DEATH RECEPTOR; EXPRESSION; HEMOCYTES; RESPONSES; PATHWAYS; IMMUNE; CELLS; BAX;
D O I
10.1007/s11033-025-10238-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of gamma-aminobutyric acid (GABA) in the adaptation of environmental stress.Methods and resultsThis study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes. Following 24 h of exposure to seawater at 28 degrees C, notable histopathological changes, including cellular swelling and vacuolization, along with an increase in TUNEL-positive cells were observed in the oyster gill, compared to the control group maintained at 18 degrees C. Moreover, there was a significant increase in CgCaspase-3 transcripts, Caspase-3 and Caspase-9 activities in the gills, glutamate decarboxylase CgGAD transcripts in the haemocytes, and GABA concentrations in the haemolymph supernatant. Intervention with GABA markedly ameliorated these responses, including reducing the mRNA expression levels of CgBax, CgBak, CgCaspase-3, and CgCaspase-9, as well as the activities of Caspase-3/9. Furthermore, after the treatment with GABAA and GABAB receptor antagonists, the activities and expression levels of Caspase-3 and Caspase-9 significantly up-regulated under hightemperature stress. GABA treatment also significantly diminished the increased Caspase-3 activity by mitochondrial pathway apoptosis inducers.ConclusionsHigh temperature induced mitochondrial pathway apoptosis via increased caspase activities. The transcripts of CgGAD in haemocytes and GABA concentration in hemolymph supernatant also increased after high-temperature stress. GABA countered these effects through the activation of GABAA and GABAB receptors, reducing both caspase activity and expression of apoptosis-related genes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Developmental dynamics of myogenesis in Pacific oyster Crassostrea gigas
    Li, Huijuan
    Li, Qi
    Yu, Hong
    Du, Shaojun
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2019, 227 : 21 - 30
  • [42] Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas
    Evans, Sanford
    Camara, Mark D.
    Langdon, Christopher J.
    AQUACULTURE, 2009, 286 (3-4) : 211 - 216
  • [43] Gamete quality in triploid Pacific oyster (Crassostrea gigas)
    Suquet, Marc
    Malo, Florent
    Quere, Claudie
    Leduc, Christophe
    Le Grand, Jacqueline
    Benabdelmouna, Abdellah
    AQUACULTURE, 2016, 451 : 11 - 15
  • [44] Successful cryopreservation of Pacific oyster (Crassostrea gigas) oocytes
    Tervit, HR
    Adams, SL
    Roberts, RD
    McGowan, LT
    Pugh, PA
    Smith, JF
    Janke, AR
    CRYOBIOLOGY, 2005, 51 (02) : 142 - 151
  • [45] Reproductive patterns of the Pacific oyster Crassostrea gigas in France
    Lango-Reynoso, Fabiola
    Chavez-Villaba, Jorge
    Le Pennec, Marcel
    INVERTEBRATE REPRODUCTION & DEVELOPMENT, 2006, 49 (1-2) : 41 - 50
  • [46] A tolloid homologue from the Pacific oyster Crassostrea gigas
    Herpin, Amaury
    Lelong, Christophe
    Becker, Tom
    Favrel, Pascal
    Cunningham, Charles
    GENE EXPRESSION PATTERNS, 2007, 7 (06) : 700 - 708
  • [47] Ecophysiology of the Olympia Oyster, Ostrea lurida, and Pacific Oyster, Crassostrea gigas
    Gray, Matthew W.
    Langdon, Chris J.
    ESTUARIES AND COASTS, 2018, 41 (02) : 521 - 535
  • [48] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (06) : 1453 - 1458
  • [49] Impact of ocean acidification on the intestinal microflora of the Pacific oyster Crassostrea gigas
    Kong, Ning
    Han, Shuo
    Fu, Qiang
    Yu, Zichao
    Wang, Lingling
    Song, Linsheng
    AQUACULTURE, 2022, 546
  • [50] The transcriptional response of the Pacific oyster Crassostrea gigas under simultaneous bacterial and heat stresses
    Zhang, Huan
    Wang, Hao
    Chen, Hao
    Wang, Mengqiang
    Zhou, Zhi
    Qiu, Limei
    Wang, Lingling
    Song, Linsheng
    DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 2019, 94 : 1 - 10