Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

被引:0
作者
Wang, Xing [1 ]
Lu, Daowei [1 ]
Wang, Ding-Guo [2 ]
机构
[1] Jining Univ, Sch Math & Big Data, 1 Xingtan Rd, Qufu 273155, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, 57 Jingxuan West Rd, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hopf group-coalgebra; Radford's <italic>pi</italic>-biproduct; automorphism; ALGEBRAS; CATEGORIES; MODULES;
D O I
10.21136/CMJ.2024.0454-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's pi-biproduct. Firstly, we discuss the endomorphism monoid End pi-Hopf(A x H, p) and the automorphism group Aut pi-Hopf(A x H, p) of Radford's pi-biproduct A x H = {A x H alpha}alpha is an element of pi, and prove that the automorphism has a factorization closely related to the factors A and H = {H alpha}alpha is an element of pi. What's more interesting is that a pair of maps (FL, FR) can be used to describe a family of mappings F = {F alpha}alpha is an element of pi. Secondly, we consider the relationship between the automorphism group Aut pi-Hopf(A x H, p) and the automorphism group Aut pi-YD-Hopf(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Aut}_{\pi\text{-}\mathcal{Y}\mathcal{D}\text{-Hopf}}(A)$$\end{document} of A, and a normal subgroup of the automorphism group Aut pi-Hopf(A x H, p). Finally, we specifically describe the automorphism group of an example.
引用
收藏
页码:1059 / 1082
页数:24
相关论文
共 19 条
  • [1] On the classification of finite-dimensional pointed Hopf algebras
    Andruskiewitsch, Nicolas
    Schneider, Hans-Juergen
    [J]. ANNALS OF MATHEMATICS, 2010, 171 (01) : 375 - 417
  • [2] Radford's biproduct for quasi-Hopf algebras and bosonization
    Bulacu, D
    Nauwelaerts, E
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 174 (01) : 1 - 42
  • [3] Delvaux L, 2007, ALGEBR REPRESENT TH, V10, P533, DOI 10.1007/S10468-007-9053-6
  • [4] [郭双建 Guo Shuangjian], 2014, [数学物理学报. A辑, Acta Mathematica Scientia], V34, P327
  • [5] Hopf π-Crossed Biproduct and Related Coquasitriangular Structures
    Ma, Tianshui
    Song, Yanan
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 130 : 127 - 145
  • [6] On automorphisms of biproducts
    Radford, David E.
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1365 - 1398
  • [7] THE STRUCTURE OF HOPF-ALGEBRAS WITH A PROJECTION
    RADFORD, DE
    [J]. JOURNAL OF ALGEBRA, 1985, 92 (02) : 322 - 347
  • [8] Blattner-Cohen-Montgomery's duality theorem for (weak) group smash products
    Shen, Bing-liang
    Wang, Shuan-hong
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) : 2387 - 2409
  • [9] Radford's Biproducts for Hopf Group-Coalgebras and Its Quasitriangular Structures
    Shen, Bing-Liang
    Liu, Ling
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2013, 83 (01): : 129 - 146
  • [10] Sweedler M.E., 1969, Hopf algebras. Mathematics lecture note series