Script identification in handwritten and printed documents using convolutional recurrent connection

被引:0
|
作者
Jindal A. [1 ]
机构
[1] School of Computer Science, UPES, Bidholi, Uttarakhand, Dehradun
关键词
Bayesian optimization; CNN-LSTM; Deep learning; Script identification;
D O I
10.1007/s11042-024-19106-x
中图分类号
学科分类号
摘要
Identification of the script in multi-script handwritten or printed documents is one of the essential component to recognize the text. The script identification module helps Optical Character Recognition (OCR) to digitize the text present in the multi-script handwritten or printed documents. The similarity of characters between two or more scripts create this task tedious. The factors such as noise and writing style creates identification of the script more tedious. The present research work has proposed a deep learning method having a set of optimized convolutional layers followed by recurrently connected layers to identify the script of any word sample present in the handwritten or printed document. The proposed method has two components to extract deep hierarchical features and identify the temporal features. The experiments have been carried out on MDIW-13 and PHDIndic_11 datasets having handwritten and printed documents. The experimental results from the proposed method has improved the performance over existing methods in this regard. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
引用
收藏
页码:5549 / 5563
页数:14
相关论文
共 50 条
  • [41] EkushNet: Using Convolutional Neural Network for Bangla Handwritten Recognition
    Rabby, A. K. M. Shahariar Azad
    Haque, Sadeka
    Abujar, Sheikh
    Hossain, Syed Akhter
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 603 - 610
  • [42] Persian Handwritten Character Recognition Using Convolutional Neural Network
    Sarvaramini, Farzin
    Nasrollahzadeh, Alireza
    Soryani, Mohsen
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1676 - 1680
  • [43] Handwritten Signature Forgery Detection using Convolutional Neural Networks
    Gideon, Jerome S.
    Kandulna, Anurag
    Kujur, Aron Abhishek
    Diana, A.
    Raimond, Kumudha
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 978 - 987
  • [44] Bangla Handwritten Digit Recognition Using Convolutional Neural Network
    Rabby, A. K. M. Shahariar Azad
    Abujar, Sheikh
    Haque, Sadeka
    Hossain, Syed Akhter
    EMERGING TECHNOLOGIES IN DATA MINING AND INFORMATION SECURITY, IEMIS 2018, VOL 1, 2019, 755 : 111 - 122
  • [45] Recognizing Persian Handwritten Words Using Deep Convolutional Networks
    Sabzi, Rasool
    Fotoohinya, Zahra
    Salkhorde, Zeinab
    Khalili, Abdullah
    Golzari, Shahram
    Behravesh, Sajjad
    Akbarpour, Shahin
    2017 19TH CSI INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2017, : 85 - 90
  • [46] Arabic Handwritten Characters Recognition Using Convolutional Neural Network
    AlJarrah, Mohammed N.
    Zyout, Mo'ath M.
    Duwairi, Rehab
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 182 - 188
  • [47] Handwritten Arabic numerals recognition using convolutional neural network
    Ahamed, Pratik
    Kundu, Soumyadeep
    Khan, Tauseef
    Bhateja, Vikrant
    Sarkar, Ram
    Mollah, Ayatullah Faruk
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 5445 - 5457
  • [48] Handwritten Hangul recognition using deep convolutional neural networks
    In-Jung Kim
    Xiaohui Xie
    International Journal on Document Analysis and Recognition (IJDAR), 2015, 18 : 1 - 13
  • [49] Smart Device Authentication Based on Online Handwritten Script Identification and Word Recognition in Indic Scripts Using Zone-Wise Features
    Ghosh, Rajib
    Roy, Partha Pratim
    Kumar, Prabhat
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2018, 9 (01) : 21 - 55
  • [50] Recognition of Urdu Handwritten Alphabet Using Convolutional Neural Network (CNN)
    Ahmed, Gulzar
    Alyas, Tahir
    Iqbal, Muhammad Waseem
    Ashraf, Muhammad Usman
    Alghamdi, Ahmed Mohammed
    Bahaddad, Adel A.
    Almarhabi, Khalid Ali
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2967 - 2984