Reevaluating feature importance in machine learning for food authentication: Addressing bias and enhancing methodological rigor

被引:0
|
作者
Takefuji, Yoshiyasu [1 ]
机构
[1] Musashino Univ, Fac Data Sci, 3-3-3 Ariake Koto Ku, Tokyo 1358181, Japan
关键词
Food authentication; Machine learning; Artificial intelligence; Feature importance; Bias assessment; Statistical methods; Robust analysis; FEATURE-SELECTION; MODELS;
D O I
10.1016/j.tifs.2024.104853
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Background: Bhat et al. (2025) highlight the significant role of artificial intelligence (AI) and machine learning (ML) in food authentication through advanced algorithms that analyze large datasets for patterns associated with food fraud. Objective: This paper aims to critically assess the approach of Bhat et al., with a specific focus on model-based feature importance and the biases related to traditional machine learning methods. Methods: The paper distinguishes between machine learning target predictions and feature importances, advocating for the rigorous application of robust statistical techniques, including Spearman's correlation and pvalues, to accurately reveal genuine associations among variables. Results: The analysis emphasizes the necessity for researchers to comprehend the foundational principles of AI and ML to avoid misapplication of these technologies. Conclusion: The paper recommends integrating both nonparametric and nonlinear methods to effectively reduce bias and improve the reliability of feature importance assessments in food authentication.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Addressing grading bias in rock climbing: machine and deep learning approaches
    O'Mara, B.
    Mahmud, M. S.
    FRONTIERS IN SPORTS AND ACTIVE LIVING, 2025, 6
  • [22] Enhancing Software Cost Estimation Using Feature Selection and Machine Learning Techniques
    Mansoor, Fizza
    Alim, Muhammad Affan
    Jilani, Muhammad Taha
    Alam, Muhammad Monsoor
    Su’ud, Mazliham Mohd
    Computers, Materials and Continua, 2024, 81 (03) : 4603 - 4624
  • [23] AMCB: enhancing the authentication process with blockchain integrated with PUF and machine learning
    Al-Ghuraybi H.A.
    AlZain M.A.
    Soh B.
    Multimedia Tools and Applications, 2025, 84 (8) : 4809 - 4835
  • [24] Explainable AI-driven prediction of APE1 inhibitors: enhancing cancer therapy with machine learning models and feature importance analysis
    Iqbal, Aga Basit
    Masoodi, Tariq Ahmad
    Bhat, Ajaz A.
    Macha, Muzafar A.
    Assad, Assif
    Shah, Syed Zubair Ahmad
    MOLECULAR DIVERSITY, 2025,
  • [25] Estimating feature importance in circuit network using machine learning
    Nie, Tingyuan
    Zhao, Mingzhi
    Zhu, Zuyuan
    Zhao, Kun
    Wang, Zhenhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 31233 - 31249
  • [26] Enhancing Food Integrity through Artificial Intelligence and Machine Learning: A Comprehensive Review
    Gbashi, Sefater
    Njobeh, Patrick Berka
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [27] Estimating feature importance in circuit network using machine learning
    Tingyuan Nie
    Mingzhi Zhao
    Zuyuan Zhu
    Kun Zhao
    Zhenhao Wang
    Multimedia Tools and Applications, 2024, 83 : 31233 - 31249
  • [28] Applications of machine learning techniques for enhancing nondestructive food quality and safety detection
    Lin, Yuandong
    Ma, Ji
    Wang, Qijun
    Sun, Da-Wen
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2023, 63 (12) : 1649 - 1669
  • [29] Enhancing software model encoding for feature location approaches based on machine learning techniques
    Marcen, Ana C.
    Perez, Francisca
    Pastor, Oscar
    Cetina, Carlos
    SOFTWARE AND SYSTEMS MODELING, 2022, 21 (01) : 399 - 433
  • [30] An Improved Approach for Detection of Diabetic Retinopathy Using Feature Importance and Machine Learning Algorithms
    Huda, S. M. Asiful
    Ila, Ishrat Jahan
    Sarder, Shahrier
    Shamsujjoha, Md
    Ali, Md Nawab Yousuf
    2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 113 - 117