Real-Time estimation of internal and solar heat gains in buildings using deep learning

被引:2
|
作者
Mah, Dongjun [1 ,2 ]
Tzempelikos, Athanasios [1 ,2 ]
机构
[1] Purdue Univ, Lyles Sch Civil & Construct Engn, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Ctr High Performance Bldg, Ray W Herrick Labs, 140 S Martin Jischke Dr, W Lafayette, IN 47907 USA
关键词
Internal gains; Monitoring; Low-cost cameras; Deep Learning; Energy savings;
D O I
10.1016/j.enbuild.2024.114864
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents real-time monitoring of dynamic internal and solar heat gains using programmable low-cost cameras and deep learning techniques. For monitoring changes in occupancy, equipment, lighting, and window status in real time, a convolutional neural network (CNN)-based multi-head classification model was developed and trained with High Dynamic Range (HDR) images, collected using a low-cost fisheye camera in offices. A Python-based region of interest (ROI) generation program was developed to predefine the target areas for monitoring. The classification heads of the model were trained from scratch using a small office image dataset first; then, they were fine-tuned using another HDR image dataset collected in a larger open-plan office with more complex scenes, to evaluate the transferability of the model. The weighted mean classification precision and recall results showed that the developed model could classify the detailed status of each target heat gain (occupants, equipment, lighting, windows) in the predefined areas of the scene with great performance. Finally, to evaluate the impact of real-time monitoring of heat gains on energy demand, the open plan office space used for the experimental dataset collection was modeled using EnergyPlus software using (i) commonly assumed fixed schedules for occupancy, equipment and lighting and (ii) real-time monitored dynamic schedules for internal and solar gain components under the same weather conditions. The results showed that recommended fixed schedules may lead to significant errors in estimated internal and solar gains. The largest discrepancy was noted for occupancy and equipment usage, but other categories also showed both underestimation and overestimation of thermal load components. Implementing reliable and continuous monitoring of dynamic internal and solar heat gains is important for efficient demand-driven HVAC control.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data fusion in predicting internal heat gains for office buildings through a deep learning approach
    Wang, Zhe
    Hong, Tianzhen
    Piette, Mary Ann
    APPLIED ENERGY, 2019, 240 : 386 - 398
  • [2] Real-time Yield Estimation based on Deep Learning
    Rahnemoonfar, Maryam
    Sheppard, Clay
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING II, 2017, 10218
  • [3] A framework for real-time vehicle counting and velocity estimation using deep learning
    Chen, Wei-Chun
    Deng, Ming-Jay
    Liu, Ping-Yu
    Lai, Chun-Chi
    Lin, Yu-Hao
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2023, 40
  • [4] Real-Time Estimation of Eye Movement Condition Using a Deep Learning Model
    Sugiura, Akihiro
    Itazu, Yoshiki
    Tanaka, Kunihiko
    Takada, Hiroki
    HCI INTERNATIONAL 2021 - LATE BREAKING PAPERS: MULTIMODALITY, EXTENDED REALITY, AND ARTIFICIAL INTELLIGENCE, 2021, 13095 : 132 - 143
  • [5] Deep learning smartphone application for real-time detection of defects in buildings
    Perez, Husein
    Tah, Joseph H. M.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2021, 28 (07)
  • [6] Real-Time Classification of Earthquake using Deep Learning
    Kuyuk, H. Serdar
    Susumu, Ohno
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 298 - 305
  • [7] Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method
    Wei, Shuangyu
    Tien, Paige Wenbin
    Calautit, John Kaiser
    Wu, Yupeng
    Boukhanouf, Rabah
    APPLIED ENERGY, 2020, 277
  • [8] Real-Time Stroke Detection Using Deep Learning and Federated Learning
    Elhanashi, Abdussalam
    Dini, Pierpaolo
    Saponara, Sergio
    Zheng, Qinghe
    Alsharif, Ibrahim
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [9] Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules
    Araji, Mohamad T.
    Waqas, Ali
    Ali, Rahmat
    APPLIED ENERGY, 2024, 375
  • [10] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850