Dose optimization of piperacillin/tazobactam, cefepime, and ceftazidime for carbapenem-resistant Pseudomonas aeruginosa isolates in Turkiye

被引:1
作者
Buyukyanbolu, Ecem [1 ,2 ]
Gill, Christian M. [2 ]
Genc, Leyla [1 ]
Karakus, Mehmet [3 ]
Comert, Fusun [4 ]
Otlu, Baris [5 ]
Aktas, Elif [1 ]
Nicolau, David P. [2 ]
机构
[1] Univ Hlth Sci, Hamidiye Etfal Training & Res Hosp, Dept Med Microbiol, Istanbul, Turkiye
[2] Hartford Hosp, Ctr Antiinfect Res & Dev, 80 Seymour St, Hartford, CT 06102 USA
[3] Univ Hlth Sci, Dept Med Microbiol, Istanbul, Turkiye
[4] Bulent Ecevit Univ, Fac Med, Dept Med Microbiol, Zonguldak, Turkiye
[5] Inonu Univ, Fac Med, Dept Med Microbiol, Malatya, Turkiye
关键词
P; aeruginosa; Dose optimization; Cephalosporin; PK/PD; Carbapenem resistance; IN-VIVO EFFICACY; DOSING INTERVALS; THIGH-INFECTION; BETA-LACTAM; INFUSION; PHARMACODYNAMICS; PNEUMONITIS; MEROPENEM; IMIPENEM; OUTCOMES;
D O I
10.1007/s10096-024-04990-w
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Introduction Although CRPA may test susceptible to other beta-lactams such as ceftazidime (CAZ), cefepime (FEP), and piperacillin/tazobactam (TZP), reduced potency has been observed. We assessed the adequacy of EUCAST Susceptible (S) or Susceptible Increased Exposure (SIE)/(I) doses for CAZ, FEP, and TZP against CRPA clinical isolates. Methods CRPA isolates were collected from patients at three Turkish hospitals. CAZ, FEP, and TZP MICs were determined using broth microdilution. Monte Carlo simulations were performed to determine the probability of target attainment (PTA) for a free time above the MIC (fT > MIC) targets for various doses of each agent against isolates defined as susceptible. fT > MIC targets were 70% for CAZ or FEP and 50% for TZP. Cumulative fraction of response (CFR) was calculated. Optimal PTA and CFR was 90% target achievement. Results The percentages of isolates SIE/I to CAZ, FEP, and TZP were 49,8%, 47%, and 31,8% respectively. Reduced potency was noted with 54,1% of CAZ-S isolates having MICs of 4 or 8 mg/L. Of the FEP and TZP-S isolates, MICs at the breakpoint (8 and 16 mg/L, respectively) were the mode with 45,2 and 53,9% of isolates for each, respectively. At an MIC of 8 mg/L for CAZ, the EUCAST standard dose was insufficient (CFR of 85%). 3 h infusions of EUCAST SIE doses were required for 90% PTA at MIC of 8 mg/L and an optimized CFR of 100%. For FEP, the SIE dose of 2 g q8h 0.5 h infusion of was effective (CFR 96%), utilization of an extended 3 h infusion further optimized the PTA at 8 mg/L (CFR 99%). For TZP, the standard dose of 4.5 q6h administered as a 0.5 h infusion was inadequate (CFR 86%). A standard TZP dose with an extended infusion (4.5 g q8h over 4 h) and the SIE dose 4.5 g q6h 3 h infusion resulted in CFRs > 95%. Conclusion These data support the EUCAST SIE breakpoints for FEP and TZP. To optimize PTA at the SIE breakpoint for CAZ, prolonged infusion is required.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
[21]   Risk factors for carbapenem-resistant Pseudomonas aeruginosa infection in a tertiary care hospital in Serbia [J].
Djordjevic, Zorana ;
Folic, Marko ;
Zecevic, Dejana Ruzic ;
Ilic, Goran ;
Jankovic, Slobodan .
JOURNAL OF INFECTION IN DEVELOPING COUNTRIES, 2013, 7 (09) :686-690
[22]   Molecular epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in southeast Shanxi, China [J].
Bai, Yang ;
Gong, Yan-e ;
Shen, Fangfang ;
Li, Hui ;
Cheng, Yan ;
Guo, Jinying ;
Liu, Guangming ;
Ji, Ai -fang .
JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 2024, 36 :301-306
[23]   In vitro antimicrobial activity of imipenem plus amikacin or polymyxin B against carbapenem-resistant Pseudomonas aeruginosa isolates [J].
Wilhelm, Camila M. ;
Nunes, Luciana de S. ;
Martins, Andreza F. ;
Barth, Afonso L. .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2018, 92 (02) :152-154
[24]   Emerging Carbapenem-Resistant Pseudomonas aeruginosa Isolates Carrying bla(IMP) Among Burn Patients in Isfahan, Iran [J].
Radan, Mohsen ;
Moniri, Rezvan ;
Khorshidi, Ahmad ;
Gilasi, Hamidreza ;
Norouzi, Zohreh ;
Beigi, Fahimeh ;
Goli, Yasaman Dasteh .
ARCHIVES OF TRAUMA RESEARCH, 2016, 5 (03)
[25]   Risk Factors for Carbapenem-resistant Pseudomonas aeruginosa Infection in Children [J].
Li, Lu ;
Huang, Yanfeng ;
Tang, Qiqin ;
Zheng, Yuqiang .
PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2022, 41 (08) :642-647
[26]   INCIDENCE OF CARBAPENEM-RESISTANT PSEUDOMONAS AERUGINOSA IN DIABETES AND CANCER PATIENTS [J].
Varaiya, A. ;
Kulkarni, M. ;
Bhalekar, P. ;
Dogra, J. .
INDIAN JOURNAL OF MEDICAL MICROBIOLOGY, 2008, 26 (03) :238-240
[27]   Quorum Sensing and Genetic Lineages in Carbapenem-Resistant Pseudomonas aeruginosa [J].
Shafigh, Maryam ;
Pournajaf, Abazar ;
Amoli, Rabeeh Izadi ;
Yahyapour, Yousef ;
Kaboosi, Hami .
JUNDISHAPUR JOURNAL OF MICROBIOLOGY, 2024, 17 (10)
[28]   Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan [J].
Yano, Hirokazu ;
Hayashi, Wataru ;
Kawakami, Sayoko ;
Aoki, Sadao ;
Anzai, Eiko ;
Zuo, Hui ;
Kitamura, Norikazu ;
Hirabayashi, Aki ;
Kajihara, Toshiki ;
Kayama, Shizuo ;
Sugawara, Yo ;
Yahara, Koji ;
Sugai, Motoyuki .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2024, 68 (05)
[29]   Epidemiology and outcomes associated with carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa: a retrospective cohort study [J].
Vivo, Amanda ;
Fitzpatrick, Margaret A. ;
Suda, Katie J. ;
Jones, Makoto M. ;
Perencevich, Eli N. ;
Rubin, Michael A. ;
Ramanathan, Swetha ;
Wilson, Geneva M. ;
Evans, Martin E. ;
Evans, Charlesnika T. .
BMC INFECTIOUS DISEASES, 2022, 22 (01)
[30]   Epidemiology and outcomes associated with carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa: a retrospective cohort study [J].
Amanda Vivo ;
Margaret A. Fitzpatrick ;
Katie J. Suda ;
Makoto M. Jones ;
Eli N. Perencevich ;
Michael A. Rubin ;
Swetha Ramanathan ;
Geneva M. Wilson ;
Martin E. Evans ;
Charlesnika T. Evans .
BMC Infectious Diseases, 22