High-dimensional entanglement witnessed by correlations in arbitrary bases

被引:0
作者
Li, Nicky Kai Hong [1 ,2 ,3 ]
Huber, Marcus [1 ,3 ]
Friis, Nicolai [1 ,3 ]
机构
[1] Tech Univ Wien, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI, Boltzmanngasse 3, A-1090 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
QUANTUM; STATE; COMMUNICATION; KEY;
D O I
10.1038/s41534-025-00990-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certifying entanglement is an important step in the development of many quantum technologies, especially for higher-dimensional systems, where entanglement promises increased capabilities for quantum communication and computation. A key feature distinguishing entanglement from classical correlations is the occurrence of correlations for complementary measurement bases. In particular, mutually unbiased bases (MUBs) are a paradigmatic example that is well-understood and routinely employed for entanglement certification. However, implementing unbiased measurements exactly is challenging and not generically possible for all physical platforms. Here, we extend the entanglement-certification toolbox from correlations in MUBs to arbitrary bases. This practically significant simplification paves the way for efficient characterizations of high-dimensional entanglement in a wide range of physical systems. Furthermore, we introduce a simple three-MUBs construction for all dimensions without using the Wootters-Fields construction, potentially simplifying experimental requirements when measurements in more than two MUBs are needed, especially in high-dimensional settings.
引用
收藏
页数:9
相关论文
共 63 条
[51]   The security of practical quantum key distribution [J].
Scarani, Valerio ;
Bechmann-Pasquinucci, Helle ;
Cerf, Nicolas J. ;
Dusek, Miloslav ;
Luetkenhaus, Norbert ;
Peev, Momtchil .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1301-1350
[52]  
SHOR PW, DISCRETE LOGARITHMS AND FACTORING
[53]   Constructions of approximately mutually unbiased bases [J].
Shparlinski, IE ;
Winterhof, A .
LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 :793-799
[54]  
Sloane N. J. A., 2025, The Online Encyclopedia of Integer Sequences
[55]   Entanglement detection via mutually unbiased bases [J].
Spengler, Christoph ;
Huber, Marcus ;
Brierley, Stephen ;
Adaktylos, Theodor ;
Hiesmayr, Beatrix C. .
PHYSICAL REVIEW A, 2012, 86 (02)
[56]  
Tchebichef M., 1852, J MATH PURE APPL, V17, P366
[57]   Schmidt number for density matrices [J].
Terhal, BM ;
Horodecki, P .
PHYSICAL REVIEW A, 2000, 61 (04) :4
[58]   High-Dimensional Pixel Entanglement: Efficient Generation and Certification [J].
Valencia, Natalia Herrera ;
Srivastav, Vatshal ;
Pivoluska, Matej ;
Huber, Marcus ;
Friis, Nicolai ;
McCutcheon, Will ;
Malik, Mehul .
QUANTUM, 2020, 4
[59]   Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems [J].
Verstraete, F. ;
Murg, V. ;
Cirac, J. I. .
ADVANCES IN PHYSICS, 2008, 57 (02) :143-224
[60]   LOWER BOUNDS ON MAXIMUM CROSS-CORRELATION OF SIGNALS [J].
WELCH, LR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (03) :397-399