High-dimensional entanglement witnessed by correlations in arbitrary bases

被引:0
作者
Li, Nicky Kai Hong [1 ,2 ,3 ]
Huber, Marcus [1 ,3 ]
Friis, Nicolai [1 ,3 ]
机构
[1] Tech Univ Wien, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI, Boltzmanngasse 3, A-1090 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
QUANTUM; STATE; COMMUNICATION; KEY;
D O I
10.1038/s41534-025-00990-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certifying entanglement is an important step in the development of many quantum technologies, especially for higher-dimensional systems, where entanglement promises increased capabilities for quantum communication and computation. A key feature distinguishing entanglement from classical correlations is the occurrence of correlations for complementary measurement bases. In particular, mutually unbiased bases (MUBs) are a paradigmatic example that is well-understood and routinely employed for entanglement certification. However, implementing unbiased measurements exactly is challenging and not generically possible for all physical platforms. Here, we extend the entanglement-certification toolbox from correlations in MUBs to arbitrary bases. This practically significant simplification paves the way for efficient characterizations of high-dimensional entanglement in a wide range of physical systems. Furthermore, we introduce a simple three-MUBs construction for all dimensions without using the Wootters-Fields construction, potentially simplifying experimental requirements when measurements in more than two MUBs are needed, especially in high-dimensional settings.
引用
收藏
页数:9
相关论文
共 63 条
[41]  
Kueng R, 2015, Arxiv, DOI arXiv:1510.02767
[42]   Simplifying quantum logic using higher-dimensional Hilbert spaces [J].
Lanyon, Benjamin P. ;
Barbieri, Marco ;
Almeida, Marcelo P. ;
Jennewein, Thomas ;
Ralph, Timothy C. ;
Resch, Kevin J. ;
Pryde, Geoff J. ;
O'Brien, Jeremy L. ;
Gilchrist, Alexei ;
White, Andrew G. .
NATURE PHYSICS, 2009, 5 (02) :134-140
[43]  
Ledoux M., 2001, Mathematical Surveys and Monographs, V192
[44]   Convex-roof extended negativity as an entanglement measure for bipartite quantum systems [J].
Lee, S ;
Chi, DP ;
Oh, SD ;
Kim, J .
PHYSICAL REVIEW A, 2003, 68 (06) :5
[45]  
Milman V. D., 1986, Asymptotic Theory of Finite Dimensional Normed Spaces, V160
[46]   Resource-Efficient High-Dimensional Entanglement Detection via Symmetric Projections [J].
Morelli, Simon ;
Huber, Marcus ;
Tavakoli, Armin .
PHYSICAL REVIEW LETTERS, 2023, 131 (17)
[47]   Entanglement Detection with Imprecise Measurements [J].
Morelli, Simon ;
Yamasaki, Hayata ;
Huber, Marcus ;
Tavakoli, Armin .
PHYSICAL REVIEW LETTERS, 2022, 128 (25)
[48]   Quantum Circuits for Exact Unitary t-Designs and Applications to Higher-Order Randomized Benchmarking [J].
Nakata, Yoshifumi ;
Zhao, Da ;
Okuda, Takayuki ;
Bannai, Eiichi ;
Suzuki, Yasunari ;
Tamiya, Shiro ;
Heya, Kentaro ;
Yan, Zhiguang ;
Zuo, Kun ;
Tamate, Shuhei ;
Tabuchi, Yutaka ;
Nakamura, Yasunobu .
PRX QUANTUM, 2021, 2 (03)
[49]   Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera [J].
Ndagano, Bienvenu ;
Defienne, Hugo ;
Lyons, Ashley ;
Starshynov, Ilya ;
Villa, Federica ;
Tisa, Simone ;
Faccio, Daniele .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[50]   Concurrence-based entanglement measures for isotropic states [J].
Rungta, P ;
Caves, CM .
PHYSICAL REVIEW A, 2003, 67 (01) :9