High-dimensional entanglement witnessed by correlations in arbitrary bases

被引:0
作者
Li, Nicky Kai Hong [1 ,2 ,3 ]
Huber, Marcus [1 ,3 ]
Friis, Nicolai [1 ,3 ]
机构
[1] Tech Univ Wien, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI, Boltzmanngasse 3, A-1090 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
QUANTUM; STATE; COMMUNICATION; KEY;
D O I
10.1038/s41534-025-00990-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certifying entanglement is an important step in the development of many quantum technologies, especially for higher-dimensional systems, where entanglement promises increased capabilities for quantum communication and computation. A key feature distinguishing entanglement from classical correlations is the occurrence of correlations for complementary measurement bases. In particular, mutually unbiased bases (MUBs) are a paradigmatic example that is well-understood and routinely employed for entanglement certification. However, implementing unbiased measurements exactly is challenging and not generically possible for all physical platforms. Here, we extend the entanglement-certification toolbox from correlations in MUBs to arbitrary bases. This practically significant simplification paves the way for efficient characterizations of high-dimensional entanglement in a wide range of physical systems. Furthermore, we introduce a simple three-MUBs construction for all dimensions without using the Wootters-Fields construction, potentially simplifying experimental requirements when measurements in more than two MUBs are needed, especially in high-dimensional settings.
引用
收藏
页数:9
相关论文
共 63 条
[11]  
Bertsekas D. P., 1999, Nonlinear Programming
[12]  
Bhatia R., 1996, Matrix Analysis, V349
[13]  
Blumenson L. E., 1960, The American Mathematical Monthly, V67, P63, DOI DOI 10.2307/2308932
[14]   MAXIMAL VIOLATION OF BELL INEQUALITIES FOR MIXED STATES [J].
BRAUNSTEIN, SL ;
MANN, A ;
REVZEN, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (22) :3259-3261
[15]   Nonlocality and communication complexity [J].
Buhrman, Harry ;
Cleve, Richard ;
Massar, Serge ;
de Wolf, Ronald .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :665-698
[16]   Adaptive optical imaging with entangled photons [J].
Cameron, Patrick ;
Courme, Baptiste ;
Verniere, Chloe ;
Pandya, Raj ;
Faccio, Daniele ;
Defienne, Hugo .
SCIENCE, 2024, 383 (6687) :1142-1148
[17]  
Chang KC, 2024, Arxiv, DOI [arXiv:2310.20694, 10.48550/arXiv.2310.20694]
[18]   An asymptotic formula for a trigonometric sum of vinogradov [J].
Cochrane, T ;
Peral, JC .
JOURNAL OF NUMBER THEORY, 2001, 91 (01) :1-19
[19]   Entropic uncertainty relations and their applications [J].
Coles, Patrick J. ;
Berta, Mario ;
Tomamichel, Marco ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[20]   Bell inequalities for arbitrarily high-dimensional systems [J].
Collins, D ;
Gisin, N ;
Linden, N ;
Massar, S ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-404044