Modeling the dynamics of COVID-19 Epidemic with a reaction-diffusion framework: a case study from Thailand

被引:2
|
作者
Zarin, Rahat [1 ]
Humphries, Usa Wannasingha [1 ]
机构
[1] Thonburi KMUTT Univ Technol King Mongkuts, Fac Sci, Dept Math, Bangkok 10140, Thailand
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 12期
关键词
FINITE-DIFFERENCE; PREY-TAXIS; TRANSMISSION;
D O I
10.1140/epjp/s13360-024-05870-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper introduces a novel mathematical framework to examine the spread of COVID-19 using a two-dimensional reaction-diffusion epidemic model. The model is structured into six compartments, which account for different stages of the disease and its transmission: (S) Susceptible, (E) Exposed, (Ia\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_a$$\end{document}) Asymptomatic, (Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_s$$\end{document}) Symptomatic, (Q) Quarantined, and (R) Recovered, forming the SEQIa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_a$$\end{document}Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_s$$\end{document}R structure. The basic reproduction number, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document}, is derived through the next-generation matrix method, providing insights into the potential for disease outbreak. Model parameters are estimated using least squares curve fitting to match observed data accurately. To solve the model equations, a combination of explicit finite difference methods and an operator splitting technique is employed, effectively capturing both time and spatial dynamics. The stability of the disease-free and endemic equilibrium states is rigorously analyzed to understand the conditions under which the disease can persist or be eradicated. The study also presents comprehensive simulations that compare scenarios with and without spatial diffusion, offering a robust verification of the model's accuracy through numerical and theoretical validation. The findings provide a deeper understanding of the spatial and temporal dynamics of COVID-19 spread and suggest potential strategies for controlling the epidemic.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples
    Kevrekidis, P. G.
    Cuevas-Maraver, J.
    Drossinos, Y.
    Rapti, Z.
    Kevrekidis, G. A.
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [2] A rigorous theoretical and numerical analysis of a nonlinear reaction-diffusion epidemic model pertaining dynamics of COVID-19
    Wang, Laiquan
    Khan, Arshad Alam
    Ullah, Saif
    Haider, Nadeem
    AlQahtani, Salman A.
    Saqib, Abdul Baseer
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Numerical modeling of reaction-diffusion e-epidemic dynamics
    Yasin, Muhammad Waqas
    Ashfaq, Syed Muhammad Hamza
    Ahmed, Nauman
    Raza, Ali
    Rafiq, Muhammad
    Akguel, Ali
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [4] Modeling the dynamics of COVID-19 with real data from Thailand
    Ibrahim, Alhassan
    Humphries, Usa Wannasingha
    Ngiamsunthorn, Parinya Sa
    Baba, Isa Abdullahi
    Qureshi, Sania
    Khan, Amir
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [5] Modeling the dynamics of COVID-19 with real data from Thailand
    Alhassan Ibrahim
    Usa Wannasingha Humphries
    Parinya Sa Ngiamsunthorn
    Isa Abdullahi Baba
    Sania Qureshi
    Amir Khan
    Scientific Reports, 13 (1)
  • [6] Global Stability of a Reaction-Diffusion Malaria/COVID-19 Coinfection Dynamics Model
    Elaiw, Ahmed M.
    Al Agha, Afnan D.
    MATHEMATICS, 2022, 10 (22)
  • [7] Influence of Human Behavior on COVID-19 Dynamics Based on a Reaction-Diffusion Model
    Zhi, Shun
    Niu, Hong-Tao
    Su, You-Hui
    Han, Xiaoling
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (03)
  • [8] Computational Modeling of Reaction-Diffusion COVID-19 Model Having Isolated Compartment
    Arif, Muhammad Shoaib
    Abodayeh, Kamaleldin
    Ejaz, Asad
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1719 - 1743
  • [9] The effect of vaccination on COVID-19 transmission dynamics with comorbidity using reaction-diffusion model
    Chakravarty, Koyel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [10] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258