A quasi-boundary-value method for solving a nonlinear space-fractional backward diffusion problem

被引:1
作者
Feng, Xiaoli [1 ]
Yuan, Xiaoyu [1 ]
Zhang, Yun [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
关键词
Quasi-boundary-value method; Backward problem; Nonlinear space-fractional diffusion equation; Error estimates; PARABOLIC EQUATIONS BACKWARD; INITIAL DISTRIBUTION; REGULARIZATION;
D O I
10.1007/s10444-025-10230-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we adopt a quasi-boundary-value method to solve the nonlinear space-fractional backward problem with perturbed both final value and variable diffusion coefficient in general dimensional space, which is a severely ill-posed problem. The existence, uniqueness and stability of the solution for the quasi-boundary-value problem are proved. Convergence estimates are presented under an a-priori bound assumption of the exact solution. Finally, several numerical examples are given by the finite difference scheme and the fixed-point iteration method to show the effectiveness of the theoretical results.
引用
收藏
页数:31
相关论文
共 31 条
[1]  
Abdulkerimov L. S., 1977, Azerbaidzan. Gos. Univ. Ucen. Zap., Fiz. i Mat., V1, P32
[2]   Modern regularization methods for inverse problems [J].
Benning, Martin ;
Burger, Martin .
ACTA NUMERICA, 2018, 27 :1-111
[3]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[4]  
DElia M., 2020, Zhou Z, P1
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]   A non-local boundary value problem method for semi-linear parabolic equations backward in time [J].
Dinh Nho Hao ;
Nguyen Van Duc .
APPLICABLE ANALYSIS, 2015, 94 (03) :446-463
[7]  
Evans LawrenceC., 2010, PARTIAL DIFFERENTIAL, V2nd
[8]   A Tikhonov regularization method for solving a backward time-space fractional diffusion problem [J].
Feng, Xiaoli ;
Zhao, Meixia ;
Qian, Zhi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
[9]  
Hao D.N., 2009, Inverse Prob., V25
[10]   Regularization of parabolic equations backward in time by a non-local boundary value problem method [J].
Hao, Dinh Nho ;
Van Duc, Nguyen ;
Lesnic, D. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (02) :291-315