Prediction of pathological complete response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer using 18F-FDG PET radiomics features of primary tumour and lymph nodes

被引:4
作者
Liu, Xingbiao [1 ,3 ,4 ]
Ji, Zhilin [2 ]
Zhang, Libo [1 ,3 ,4 ]
Li, Linlin [1 ,3 ,4 ]
Xu, Wengui [1 ,3 ,4 ]
Su, Qian [1 ,3 ,4 ]
机构
[1] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Dept Mol Imaging & Nucl Med, Huanhuxi Rd, Tianjin 300060, Peoples R China
[2] Tianjin Hosp, Dept Radiol, Jiefangnan Rd, Tianjin 300211, Peoples R China
[3] Tianjins Clin Res Ctr Canc, Tianjin 300060, Peoples R China
[4] Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-small cell lung cancer; Radiomics; Neoadjuvant chemoimmunotherapy; Pathological response; PET; CHEMOTHERAPY; METASTASIS; IMMUNOTHERAPY; MODEL;
D O I
10.1186/s12885-025-13905-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundPredicting the response to neoadjuvant chemoimmunotherapy in patients with resectable non-small cell lung cancer (NSCLC) facilitates clinical treatment decisions. Our study aimed to establish a machine learning model that accurately predicts the pathological complete response (pCR) using 18F-FDG PET radiomics features.MethodsWe retrospectively included 210 patients with NSCLC who completed neoadjuvant chemoimmunotherapy and subsequently underwent surgery with pathological results, categorising them into a training set of 147 patients and a test set of 63 patients. Radiomic features were extracted from the primary tumour and lymph nodes. Using 10-fold cross-validation with the least absolute shrinkage and selection operator method, we identified the most impactful radiomic features. The clinical features were screened using univariate and multivariate analyses. Machine learning models were developed using the random forest method, leading to the establishment of one clinical feature model, one primary tumour radiomics model, and two fusion radiomics models. The performance of these models was evaluated based on the area under the curve (AUC).ResultsIn the training set, the three radiomic models showed comparable AUC values, ranging from 0.901 to 0.925. The clinical model underperformed, with an AUC of 0.677. In the test set, the Fusion_LN1LN2 model achieved the highest AUC (0.823), closely followed by the Fusion_Lnall model with an AUC of 0.729. The primary tumour model achieved a moderate AUC of 0.666, whereas the clinical model had the lowest AUC at 0.631. Additionally, the Fusion_LN1LN2 model demonstrated positive net reclassification improvement and integrated discrimination improvement values compared with the other models, and we employed the SHapley Additive exPlanations methodology to interpret the results of our optimal model.ConclusionsOur fusion radiomics model, based on 18F-FDG-PET, will assist clinicians in predicting pCR before neoadjuvant chemoimmunotherapy for patients with resectable NSCLC.
引用
收藏
页数:15
相关论文
共 54 条
[1]   18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - A prospective externally validated study [J].
Carvalho, Sara ;
Leijenaar, Ralph T. H. ;
Troost, Esther G. C. ;
van Timmeren, Janna E. ;
Oberije, Cary ;
van Elmpt, Wouter ;
de Geus-Oei, Lioe-Fee ;
Bussink, Johan ;
Lambin, Philippe .
PLOS ONE, 2018, 13 (03)
[2]   Phase II Trial of Neoadjuvant Bevacizumab Plus Chemotherapy and Adjuvant Bevacizumab in Patients with Resectable Nonsquamous Non-Small-Cell Lung Cancers [J].
Chaft, Jamie E. ;
Rusch, Valerie ;
Ginsberg, Michelle S. ;
Paik, Paul K. ;
Finley, David J. ;
Kris, Mark G. ;
Price, Katharine A. R. ;
Azzoli, Christopher G. ;
Fury, Matthew G. ;
Riely, Gregory J. ;
Krug, Lee M. ;
Downey, Robert J. ;
Bains, Manjit S. ;
Sima, Camelia S. ;
Rizk, Nabil ;
Travis, William D. ;
Rizvi, Naiyer A. .
JOURNAL OF THORACIC ONCOLOGY, 2013, 8 (08) :1084-1090
[3]   A Comparative Study of Genetic Profiles of Key Oncogenesis-Related Genes between Primary Lesions and Matched Lymph Nodes Metastasis in Lung Cancer [J].
Chen, Yuqiao ;
Mao, Beibei ;
Peng, Xiong ;
Zhou, Yuan ;
Xia, Kun ;
Guo, Hao ;
Jiang, Hong ;
Wang, Guo ;
Zhuang, Wei .
JOURNAL OF CANCER, 2019, 10 (07) :1642-1650
[4]   PD-L1 expression and Tumor mutation burden as Pathological response biomarkers of Neoadjuvant immunotherapy for Early-stage Non-small cell lung cancer: A systematic review and meta-analysis [J].
Deng, Hongsheng ;
Zhao, Yi ;
Cai, Xiuyu ;
Chen, Hualin ;
Cheng, Bo ;
Zhong, Ran ;
Li, Feng ;
Xiong, Shan ;
Li, Jianfu ;
Liu, Jun ;
He, Jianxing ;
Liang, Wenhua .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2022, 170
[5]   Association between pathologic response and survival after neoadjuvant therapy in lung cancer [J].
Deutsch, Julie Stein ;
Cimino-Mathews, Ashley ;
Thompson, Elizabeth ;
Provencio, Mariano ;
Forde, Patrick M. ;
Spicer, Jonathan ;
Girard, Nicolas ;
Wang, Daphne ;
Anders, Robert A. ;
Gabrielson, Edward ;
Illei, Peter ;
Jedrych, Jaroslaw ;
Danilovae, Ludmila ;
Sunshinee, Joel ;
Kerr, Keith M. ;
Tran, Mia ;
Bushong, Judith ;
Cai, Junliang ;
Devas, Vipul ;
Neely, Jaclyn ;
Balli, David ;
Cottrell, Tricia R. ;
Barase, Alex S. ;
Taube, Janis M. .
NATURE MEDICINE, 2024, 30 (01) :218-+
[6]   Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging [J].
Dong, Xinzhe ;
Wu, Peipei ;
Sun, Xiaorong ;
Li, Wenwu ;
Wan, Honglin ;
Yu, Jinming ;
Xing, Ligang .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2015, 59 (03) :338-345
[7]   Dynamic Adaptation of Tumor Immune Response With Nivolumab Demonstrated by 18F-FDG PET/CT [J].
Eshghi, Naghmehossadat ;
Lundeen, Tamara F. ;
Kuo, Phillip H. .
CLINICAL NUCLEAR MEDICINE, 2018, 43 (02) :114-116
[8]   The Clinical Significance of Breast-only and Node-only Pathologic Complete Response (pCR) After Neoadjuvant Chemotherapy (NACT) A Review of 20,000 Breast Cancer Patients in the National Cancer Data Base (NCDB) [J].
Fayanju, Oluwadamilola M. ;
Ren, Yi ;
Thomas, Samantha M. ;
Greenup, Rachel A. ;
Plichta, Jennifer K. ;
Rosenberger, Laura H. ;
Tamirisa, Nina ;
Force, Jeremy ;
Boughey, Judy C. ;
Hyslop, Terry ;
Hwang, Shelley .
ANNALS OF SURGERY, 2018, 268 (04) :591-601
[9]   Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial [J].
Felip, Enriqueta ;
Altorki, Nasser ;
Zhou, Caicun ;
Csoszi, Tibor ;
Vynnychenko, Ihor ;
Goloborodko, Oleksandr ;
Luft, Alexander ;
Akopov, Andrey ;
Martinez-Marti, Alex ;
Kenmotsu, Hirotsugu ;
Chen, Yuh-Min ;
Chella, Antonio ;
Sugawara, Shunichi ;
Voong, David ;
Wu, Fan ;
Yi, Jing ;
Deng, Yu ;
McCleland, Mark ;
Bennett, Elizabeth ;
Gitlitz, Barbara ;
Wakelee, Heather .
LANCET, 2021, 398 (10308) :1344-1357
[10]   Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC [J].
Gao, Shugeng ;
Li, Ning ;
Gao, Shunyu ;
Xue, Qi ;
Ying, Jianming ;
Wang, Shuhang ;
Tao, Xiuli ;
Zhao, Jun ;
Mao, Yousheng ;
Wang, Bing ;
Shao, Kang ;
Lei, Wendong ;
Wang, Dali ;
Lv, Fang ;
Zhao, Liang ;
Zhang, Fan ;
Zhao, Ziran ;
Su, Kai ;
Tan, Fengwei ;
Gao, Yibo ;
Sun, Nan ;
Wu, Dawei ;
Yu, Yue ;
Ling, Yun ;
Wang, Zhijie ;
Duan, Chunjian ;
Tang, Wei ;
Zhang, Lei ;
He, Shun ;
Wu, Ning ;
Wang, Jie ;
He, Jie .
JOURNAL OF THORACIC ONCOLOGY, 2020, 15 (05) :816-826