Ramsey Numbers of Stripes Versus Trees and Unicyclic GraphsRamsey Numbers of Stripes Versus Trees and Unicyclic GraphsS.-N. Hu, Y.-J. Peng

被引:0
作者
Si-Nan Hu [1 ]
Yue-Jian Peng [2 ]
机构
[1] Changsha University of Science and Technology,School of Mathematics and Statistics
[2] Hunan University,School of Mathematics
关键词
Ramsey number; Bipartite Ramsey number; Stripes; Tree; Unicyclic graph; 05C35; 05D10;
D O I
10.1007/s40305-023-00494-0
中图分类号
学科分类号
摘要
For graphs G and H, the Ramsey number R(G, H) is the minimum integer N such that any coloring of the edges of the complete graph KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} in red or blue yields a red G or a blue H. Denote the union of t disjoint copies of a graph F by tF. We call tK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tK_2$$\end{document} a stripe. In this paper, we completely determine Ramsey numbers of stripes versus trees and unicyclic graphs. Our result also implies that a tree is tK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tK_2$$\end{document}-good if and only if the independence number of this tree is no less than t. As an application, we improve the known Ramsey numbers of stars versus fan graphs. Moreover, we determine the bipartite Ramsey numbers of a connected bipartite graph versus stripes.
引用
收藏
页码:297 / 312
页数:15
相关论文
empty
未找到相关数据