A comparative study of handling imbalanced data using generative adversarial networks for machine learning based software fault prediction

被引:0
作者
Phuong, Ha Thi Minh [1 ]
Nguyet, Pham Vu Thu [1 ]
Minh, Nguyen Huu Nhat [1 ]
Hanh, Le Thi My [2 ]
Binh, Nguyen Thanh [1 ]
机构
[1] Univ Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, Vietnam
[2] Univ Danang, Univ Sci & Technol, Da Nang 55000, Vietnam
关键词
Data imbalance; Data sampling; Fault prediction; GANs; OPTIMIZATION ALGORITHM; ENSEMBLE;
D O I
10.1007/s10489-024-05930-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software fault prediction (SFP) is the process of identifying potentially defect-prone modules before the testing stage of a software development process. By identifying faults early in the development process, software engineers can spend their efforts on those components most likely to contain defects, thereby improving the overall quality and reliability of the software. However, data imbalance and feature redundancy are challenging issues in SFP that can negatively impact the performance of fault prediction models. Imbalanced software fault datasets, in which the number of normal modules (majority class) is significantly higher than that of faulty modules (minority class), may lead to many false negative results. In this work, we study and perform an empirical assessment of the variants of Generative Adversarial Networks (GANs), an emerging synthetic data generation method, for resolving the data imbalance issue in common software fault prediction datasets. Five GANs variations - CopulaGAN, VanillaGAN, CTGAN, TGAN and WGANGP are utilized to generate synthetic faulty samples to balance the proportion of the majority and minority classes in datasets. Thereafter, we present an extensive evaluation of the performance of different prediction models which involve combining Recursive Feature Elimination (RFE) for feature selection with GANs oversampling methods, along with pairs of Autoencoders for feature extraction with GANs models. Throughout the experiments with five fault datasets extracted from the PROMISE repository, we evaluate six different machine learning approaches using precision, recall, F1-score, Area Under Curve (AUC) and Matthews Correlation Coefficient (MCC) as performance evaluation metrics. The experimental results demonstrate that the combination of CTGAN with RFE and a pair of CTGAN with Autoencoders outperform other baselines for all datasets, followed by WGANGP and VanillaGAN. According to the comparative analysis, GANs-based oversampling methods exhibited significant improvement in dealing with data imbalance for software fault prediction.
引用
收藏
页数:34
相关论文
共 95 条
  • [1] Abaei Golnoush, 2022, ICSCA 2022: 2022 11th International Conference on Software and Computer Applications., P41, DOI 10.1145/3524304.3524310
  • [2] Ahmed Md Razu, 2020, ICCDE 2020: Proceedings of 2020 the 6th International Conference on Computing and Data Engineering, P247, DOI 10.1145/3379247.3379278
  • [3] Discriminating features-based cost-sensitive approach for software defect prediction
    Ali, Aftab
    Khan, Naveed
    Abu-Tair, Mamun
    Noppen, Joost
    McClean, Sally
    McChesney, Ian
    [J]. AUTOMATED SOFTWARE ENGINEERING, 2021, 28 (02)
  • [4] Software Defect Prediction using Tree-Based Ensembles
    Aljamaan, Hamoud
    Alazba, Amal
    [J]. PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING, PROMISE 2020, 2020, : 1 - 10
  • [5] A two-layer feature selection method using Genetic Algorithm and Elastic Net
    Amini, Fatemeh
    Hu, Guiping
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [6] Arora J.S., 2017, INTRO OPTIMUM DESIGN, Vfourth
  • [7] Prediction of software fault-prone classes using ensemble random forest with adaptive synthetic sampling algorithm
    Balaram, A.
    Vasundra, S.
    [J]. AUTOMATED SOFTWARE ENGINEERING, 2022, 29 (01)
  • [8] Balogun Abdullateef O., 2020, Intelligent Algorithms in Software Engineering. Proceedings of the 9th Computer Science On-line Conference 2020. Advances in Intelligent Systems and Computing (AISC 1224), P492, DOI 10.1007/978-3-030-51965-0_43
  • [9] Balogun AO, 2021, ADV CYBER SECURITY, P371
  • [10] On the relative value of data resampling approaches for software defect prediction
    Bennin, Kwabena Ebo
    Keung, Jacky W.
    Monden, Akito
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2019, 24 (02) : 602 - 636