Generalized holographic complexity of rotating black holes

被引:1
作者
Zhang, Ming [1 ,2 ]
Sun, Jialong [1 ]
Mann, Robert B. [2 ,3 ]
机构
[1] Jiangxi Normal Univ, Dept Phys, Nanchang 330022, Peoples R China
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 09期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
AdS-CFT Correspondence; Black Holes; Gauge-Gravity Correspondence;
D O I
10.1007/JHEP09(2024)050
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore the generalized holographic complexity of odd-dimensional Myers-Perry asymptotically Anti-de Sitter (MP-AdS) black holes with equal angular momenta within the "complexity equals anything" proposal. We begin by determining the codimension-one generalized volume complexity by finding the extremum of the generally covariant volume functional. Locally, we show that its late-time growth rate aligns with the critical momenta associated with the extremal hypersurfaces. Globally, we discover diverse phase transitions for the complexity at early times, including first-order, second-order, and multicritical transitions. An area law and a phase diagram are proposed to adapt to these phase behaviours, highlighting the effects of the black hole's angular momentum. At zero time, we define the generalized holographic complexity of formation and examine its scaling relations for both large near-extremal MP-AdS black holes and static charged black holes. We find that the scaling behaviours of the generalized volume complexity of formation maintain uniformity with those of the original holographic complexity formulations, except in cases where the scalar functional defining the generalized holographic complexity is infinite in the vacuum limit or at spatial infinity. Additionally, we show that these findings can be applied to codimension-zero observables.
引用
收藏
页数:39
相关论文
共 127 条
[1]  
Aaronson S, 2016, Arxiv, DOI [arXiv:1607.05256, 10.48550/arXiv.1607.05256, DOI 10.48550/ARXIV.1607.05256]
[2]   Subsystem complexity and holography [J].
Agon, Cesar A. ;
Headrick, Matthew ;
Swingle, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
[3]   Holographic complexity of the extended Schwarzschild-de Sitter space [J].
Aguilar-Gutierrez, Sergio E. ;
Baiguera, Stefano ;
Zenoni, Nicolo .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05)
[4]   C=Anything and the switchback effect in Schwarzschild-de Sitter space [J].
Aguilar-Gutierrez, Sergio E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
[5]  
Aguilar-Gutierrez SE, 2024, Arxiv, DOI arXiv:2305.11280
[6]   Holographic complexity of rotating black holes [J].
Al Balushi, Abdulrahim ;
Hennigar, Robie A. ;
Kunduri, Hari K. ;
Mann, Robert B. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[7]   Holographic Complexity and Thermodynamic Volume [J].
Al Balushi, Abdulrahim ;
Hennigar, Robie A. ;
Kunduri, Hari K. ;
Mann, Robert B. .
PHYSICAL REVIEW LETTERS, 2021, 126 (10)
[8]   Null hypersurfaces in Kerr?(A)dS spacetimes [J].
Al Balushi, Abdulrahim ;
Mann, Robert B. .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (24)
[9]   Holographic complexity [J].
Alishahiha, Mohsen .
PHYSICAL REVIEW D, 2015, 92 (12)
[10]   The entropy of Hawking radiation [J].
Almheiri, Ahmed ;
Hartman, Thomas ;
Maldacena, Juan ;
Shaghoulian, Edgar ;
Tajdini, Amirhossein .
REVIEWS OF MODERN PHYSICS, 2021, 93 (03)