共 50 条
- [1] Standing waves with prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm to nonlinear Schrödinger equations with combined inhomogeneous nonlinearities Letters in Mathematical Physics, 114 (1)
- [2] Inheritance of Smoothness by Extremal Functions in Bergman Spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty$$\end{document} Mathematical Notes, 2021, 110 (1-2) : 167 - 185
- [3] Stability of standing waves for NLS-log equation with δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\delta }$$\end{document}-interaction Nonlinear Differential Equations and Applications NoDEA, 2017, 24 (3)
- [4] Orbital stability of a soliton solution for the derivative nonlinear Schrödinger equation in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} spaceOrbital stability of a soliton solution...Y. Yang et al. Mathematische Zeitschrift, 2025, 310 (2)
- [5] Applications of the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi }$$\end{document}- caputo fractional operator in the existence of solutions to hybrid differential equationsApplications of the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi }$$\end{document}- Caputo Fractional Operator...M. Awadalla Journal of Applied Mathematics and Computing, 2025, 71 (2) : 1977 - 1994
- [6] Nonlinear problems with unbounded coefficients and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data Nonlinear Differential Equations and Applications NoDEA, 2020, 27 (5)
- [7] Existence of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Cores for Games Without Compact Assumptions Journal of the Operations Research Society of China, 2024, 12 (2) : 520 - 527
- [8] Some new results for ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi -$$\end{document}Hilfer fractional pantograph-type differential equation depending on ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi -$$\end{document}Riemann–Liouville integral The Journal of Analysis, 2022, 30 (1) : 195 - 219
- [9] Existence of solutions for a class of biharmonic equations with critical nonlinearity in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 (2): : 681 - 693
- [10] Existence and Multiplicity Solutions for the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-Fractional Schrödinger–Kirchhoff Equations with Electromagnetic Fields and Critical Nonlinearity Acta Applicandae Mathematicae, 2020, 165 (1) : 45 - 63