Coapproximation Wavelet Using Hermite Wavelets and Haar Wavelets

被引:0
作者
Mazaheri, H. [1 ]
Kalantari, M. [1 ]
Jesmani, S. M. [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd 89195741, Iran
[2] Natl Univ Skills NUS, Dept Mat & Met Engn, Tehran, Iran
关键词
Wavelet coapproximation; Hermite wavelets; Haar wavelets; Coapproximation wavelets;
D O I
10.1007/s40995-024-01772-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider wavelet coapproximation in Hermite wavelets and Haar wavelets. At first, we define wavelet coapproximation of a function with concerning a set. We show that if the series & sum;n=0 infinity & sum;m=0 infinity|tn,m|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=0}<^>{\infty }\sum _{m=0}<^>{\infty }|t_{n,m}|<^>2$$\end{document} is convergent, then there exists a wavelet coapproximation for a set.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 9 条
  • [1] akmak M., 2019, ACTA U APULENSIS MAT, V57, P19
  • [2] Best uniform polynomial approximation of some rational functions
    Dehghan, Mehdi
    Eslahchi, M. R.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 382 - 390
  • [3] The best uniform polynomial approximation to class of the form 1/(a2±x2)
    Eslahchi, M. R.
    Dehghan, Mehdi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 740 - 750
  • [4] Franchetti C., 1979, REV ROUM MATH PURE A, V24, P373
  • [5] Franchetti C., 1972, REV ROUMAINE MATH PU, V17, P1045
  • [6] Mason JC., 2003, CHEBYSHEV POLYNOMIAL, P341
  • [7] Mazaheri H., 2015, NEAREST FARTHEST POI
  • [8] BEST COAPPROXIMATION IN NORMED LINEAR-SPACES
    PAPINI, PL
    SINGER, I
    [J]. MONATSHEFTE FUR MATHEMATIK, 1979, 88 (01): : 27 - 44
  • [9] Rivlin T. J., 1981, An introduction to the approximation of functions