Deep learning-based classification of dementia using image representation of subcortical signals

被引:0
作者
Ranjan, Shivani [1 ]
Tripathi, Ayush [1 ]
Shende, Harshal [1 ]
Badal, Robin [3 ]
Kumar, Amit [2 ]
Yadav, Pramod [3 ]
Joshi, Deepak [2 ]
Kumar, Lalan [1 ,4 ,5 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi, India
[2] Indian Inst Technol Delhi, Ctr Biomed Engn, New Delhi, India
[3] All India Inst Ayurveda Delhi, Dept RS & BK, New Delhi, India
[4] Indian Inst Technol Delhi, Bharti Sch Telecommun, New Delhi, India
[5] Indian Inst Technol Delhi, Yardi Sch Artificial Intelligence, New Delhi, India
关键词
Dementia; Continuous wavelet transform; Deep learning; Frontotemporal dementia; Alzheimer's disease; Mild cognitive impairment; MILD COGNITIVE IMPAIRMENT; FRONTOTEMPORAL DEMENTIA; ALZHEIMERS-DISEASE; PROGRESSION; DIAGNOSIS;
D O I
10.1186/s12911-025-02924-w
中图分类号
R-058 [];
学科分类号
摘要
BackgroundDementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early and accurate diagnosis of dementia cases (AD and FTD) is crucial for effective medical care, as both conditions have similar early-symptoms. EEG, a non-invasive tool for recording brain activity, has shown potential in distinguishing AD from FTD and mild cognitive impairment (MCI).MethodsThis study aims to develop a deep learning-based classification system for dementia by analyzing EEG derived scout time-series signals from deep brain regions, specifically the hippocampus, amygdala, and thalamus. Scout time series extracted via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique are utilized. The time series is converted to image representations using continuous wavelet transform (CWT) and fed as input to deep learning models. Two high-density EEG datasets are utilized to validate the efficacy of the proposed method: the online BrainLat dataset (128 channels, comprising 16 AD, 13 FTD, and 19 healthy controls (HC)) and the in-house IITD-AIIA dataset (64 channels, including subjects with 10 AD, 9 MCI, and 8 HC). Different classification strategies and classifier combinations have been utilized for the accurate mapping of classes in both data sets.ResultsThe best results were achieved using a product of probabilities from classifiers for left and right subcortical regions in conjunction with the DenseNet model architecture. It yield accuracies of 94.17%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 77.72%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the BrainLat and IITD-AIIA datasets, respectively.ConclusionsThe results highlight that the image representation-based deep learning approach has the potential to differentiate various stages of dementia. It pave the way for more accurate and early diagnosis, which is crucial for the effective treatment and management of debilitating conditions.
引用
收藏
页数:13
相关论文
共 62 条
[11]   Montreal Cognitive Assessment Validation Study for Mild Cognitive Impairment and Alzheimer Disease [J].
Freitas, Sandra ;
Simoes, Mario Rodrigues ;
Alves, Lara ;
Santana, Isabel .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2013, 27 (01) :37-43
[12]   Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease [J].
Frisoni, GB ;
Laakso, MP ;
Beltramello, A ;
Geroldi, C ;
Bianchetti, A ;
Soininen, H ;
Trabucchi, M .
NEUROLOGY, 1999, 52 (01) :91-100
[13]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[14]   Frontotemporal Dementia: Implications for Understanding Alzheimer Disease [J].
Goedert, Michel ;
Ghetti, Bernardino ;
Spillantini, Maria Grazia .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (02)
[15]   Review on solving the forward problem in EEG source analysis [J].
Hallez, Hans ;
Vanrumste, Bart ;
Grech, Roberta ;
Muscat, Joseph ;
De Clercq, Wim ;
Vergult, Anneleen ;
D'Asseler, Yves ;
Camilleri, Kenneth P. ;
Fabri, Simon G. ;
Van Huffel, Sabine ;
Lemahieu, Ignace .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2007, 4 (1)
[16]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[17]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[18]   Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review [J].
Ibrahim, Buhari ;
Suppiah, Subapriya ;
Ibrahim, Normala ;
Mohamad, Mazlyfarina ;
Hassan, Hasyma Abu ;
Nasser, Nisha Syed ;
Saripan, M. Iqbal .
HUMAN BRAIN MAPPING, 2021, 42 (09) :2941-2968
[19]   NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease [J].
Jack, Clifford R., Jr. ;
Bennett, David A. ;
Blennow, Kaj ;
Carrillo, Maria C. ;
Dunn, Billy ;
Haeberlein, Samantha Budd ;
Holtzman, David M. ;
Jagust, William ;
Jessen, Frank ;
Karlawish, Jason ;
Liu, Enchi ;
Luis Molinuevo, Jose ;
Montine, Thomas ;
Phelps, Creighton ;
Rankin, Katherine P. ;
Rowe, Christopher C. ;
Scheltens, Philip ;
Siemers, Eric ;
Snyder, Heather M. ;
Sperling, Reisa ;
Elliott, Cerise ;
Masliah, Eliezer ;
Ryan, Laurie ;
Silverberg, Nina .
ALZHEIMERS & DEMENTIA, 2018, 14 (04) :535-562
[20]   Subject-independent trajectory prediction using pre-movement EEG during grasp and lift task [J].
Jain, Anant ;
Kumar, Lalan .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86