Deep learning-based classification of dementia using image representation of subcortical signals

被引:0
作者
Ranjan, Shivani [1 ]
Tripathi, Ayush [1 ]
Shende, Harshal [1 ]
Badal, Robin [3 ]
Kumar, Amit [2 ]
Yadav, Pramod [3 ]
Joshi, Deepak [2 ]
Kumar, Lalan [1 ,4 ,5 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi, India
[2] Indian Inst Technol Delhi, Ctr Biomed Engn, New Delhi, India
[3] All India Inst Ayurveda Delhi, Dept RS & BK, New Delhi, India
[4] Indian Inst Technol Delhi, Bharti Sch Telecommun, New Delhi, India
[5] Indian Inst Technol Delhi, Yardi Sch Artificial Intelligence, New Delhi, India
关键词
Dementia; Continuous wavelet transform; Deep learning; Frontotemporal dementia; Alzheimer's disease; Mild cognitive impairment; MILD COGNITIVE IMPAIRMENT; FRONTOTEMPORAL DEMENTIA; ALZHEIMERS-DISEASE; PROGRESSION; DIAGNOSIS;
D O I
10.1186/s12911-025-02924-w
中图分类号
R-058 [];
学科分类号
摘要
BackgroundDementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early and accurate diagnosis of dementia cases (AD and FTD) is crucial for effective medical care, as both conditions have similar early-symptoms. EEG, a non-invasive tool for recording brain activity, has shown potential in distinguishing AD from FTD and mild cognitive impairment (MCI).MethodsThis study aims to develop a deep learning-based classification system for dementia by analyzing EEG derived scout time-series signals from deep brain regions, specifically the hippocampus, amygdala, and thalamus. Scout time series extracted via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique are utilized. The time series is converted to image representations using continuous wavelet transform (CWT) and fed as input to deep learning models. Two high-density EEG datasets are utilized to validate the efficacy of the proposed method: the online BrainLat dataset (128 channels, comprising 16 AD, 13 FTD, and 19 healthy controls (HC)) and the in-house IITD-AIIA dataset (64 channels, including subjects with 10 AD, 9 MCI, and 8 HC). Different classification strategies and classifier combinations have been utilized for the accurate mapping of classes in both data sets.ResultsThe best results were achieved using a product of probabilities from classifiers for left and right subcortical regions in conjunction with the DenseNet model architecture. It yield accuracies of 94.17%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 77.72%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the BrainLat and IITD-AIIA datasets, respectively.ConclusionsThe results highlight that the image representation-based deep learning approach has the potential to differentiate various stages of dementia. It pave the way for more accurate and early diagnosis, which is crucial for the effective treatment and management of debilitating conditions.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation [J].
Ashrafian, Hossein ;
Zadeh, Elaheh Hadi ;
Khan, Rizwan Hasan .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 167 :382-394
[2]   Modelling and detecting deep brain activity with MEG and EEG [J].
Attal, Y. ;
Bhattacharjee, M. ;
Yelnik, J. ;
Cottereau, B. ;
Lefevre, J. ;
Okada, Y. ;
Bardinet, E. ;
Chupin, M. ;
Baillet, S. .
IRBM, 2009, 30 (03) :133-138
[3]   Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study [J].
Attal, Yohan ;
Schwartz, Denis .
PLOS ONE, 2013, 8 (03)
[4]   Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases [J].
Babiloni, Claudio ;
Del Percio, Claudio ;
Lizio, Roberta ;
Noce, Giuseppe ;
Lopez, Susanna ;
Soricelli, Andrea ;
Ferri, Raffaele ;
Pascarelli, Maria Teresa ;
Catania, Valentina ;
Nobili, Flavio ;
Arnaldi, Dario ;
Fama, Francesco ;
Orzi, Francesco ;
Buttinelli, Carla ;
Giubilei, Franco ;
Bonanni, Laura ;
Franciotti, Raffaella ;
Onofrj, Marco ;
Stirpe, Paola ;
Fuhr, Peter ;
Gschwandtner, Ute ;
Ransmayr, Gerhard ;
Garn, Heinrich ;
Fraioli, Lucia ;
Pievanim, Michela ;
D'Antonio, Fabrizia ;
De Lena, Carlo ;
Guntekin, Bahar ;
Hanoglu, Lutfu ;
Basar, Erol ;
Yener, Gorsev ;
Emek-Savas, Derya Durusu ;
Triggiani, Antonio Ivano ;
Taylor, John Paul ;
De Pandis, Maria Francesca ;
Vacca, Laura ;
Frisoni, Giovanni B. ;
Stocchi, Fabrizio .
CLINICAL NEUROPHYSIOLOGY, 2018, 129 (04) :766-782
[5]   Addenbrooke's cognitive examination III in the diagnosis of dementia: a critical review [J].
Bruno, Diana ;
Schurmann Vignaga, Sofia .
NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2019, 15 :441-447
[6]   Behavioral Disorders of Spatial Cognition in Patients with Mild Cognitive Impairment due to Alzheimer's Disease: Preliminary Findings from the BDSC-MCI Project [J].
Cammisuli, Davide Maria ;
Isella, Valeria ;
Verde, Federico ;
Silani, Vincenzo ;
Ticozzi, Nicola ;
Pomati, Simone ;
Bellocchio, Virginia ;
Granese, Valentina ;
Vignati, Benedetta ;
Marchesi, Gloria ;
Prete, Lorenzo Augusto ;
Pavanello, Giada ;
Castelnuovo, Gianluca .
JOURNAL OF CLINICAL MEDICINE, 2024, 13 (04)
[7]  
Chaddad A, 2018, 2018 IEEE LIFE SCIENCES CONFERENCE (LSC), P203, DOI 10.1109/LSC.2018.8572264
[8]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]   A comparison of resting state Alzheimer ?s disease and mild EEG and structural MRI for classifying cognitive impairment [J].
Farina, F. R. ;
Emek-Savas, D. D. ;
Rueda-Delgado, L. ;
Boyle, R. ;
Kiiski, H. ;
Yener, G. ;
Whelan, R. .
NEUROIMAGE, 2020, 215