Asymptotic expansions for a class of generalized holomorphic Eisenstein series, Ramanujan’s formula for ζ(2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (2k+1)$$\end{document}, Weierstraß’ elliptic and allied functions

被引:0
作者
Masanori Katsurada [1 ]
Takumi Noda [2 ]
机构
[1] Keio University,Department of Mathematics, Faculty of Economics
[2] Nihon University,Department of Mathematics, College of Engineering
关键词
Eisenstein series; Asymptotic expansion; Ramanujan’s formula; Weierstraß’elliptic function; Mellin-Barnes integral; Primary 11M36; Secondary 11E45; 11M35; 11F11;
D O I
10.1007/s11139-024-00911-9
中图分类号
学科分类号
摘要
For a class of generalized holomorphic Eisenstein series, we establish complete asymptotic expansions (Theorems 1 and 2). These, together with the explicit expression of the latter remainder (Theorem 3), naturally transfer to several new variants of the celebrated formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function (Theorem 4 and Corollaries 4.1–4.5), and to various modular type relations for the classical Eisenstein series of any even integer weight (Corollary 4.6) as well as for Weierstraß’ elliptic and allied functions (Corollaries 4.7–4.9). Crucial roles in the proofs are played by certain Mellin-Barnes type integrals, which are manipulated with several properties Kummer’s confluent hypergeometric functions.
引用
收藏
页码:679 / 715
页数:36
相关论文
共 16 条
[1]  
Berndt B(1973)Generalized Dedekind eta-functions and generalized Dedekind sums Trans. Am. Math. Soc. 178 495-508
[2]  
Berndt B(1975)Generalized Eisenstein series and modified Dedekind sums J. Reine Angew. Math. 272 182-193
[3]  
Berndt B(1975)On Eisenstein series with characters and the values of Dirichlet Acta Arith. 38 299-320
[4]  
Berndt B(1977)-functions Rocky Mt. J. Math. 7 182-193
[5]  
Katsurada M(2007)Modular transformations and generalizations of several formulae of Ramanujan Ramanujan J. 14 249-275
[6]  
Katsurada M(2015)Complete asymptotic expansions associated with Epstein zeta-functions Ramanujan J. 36 403-437
[7]  
Katsurada M(2009)Complete asymptotic expansions associated with Epstein zeta-functions II Int. J. Number Theory 5 1061-1088
[8]  
Noda T(2017)Differential actions on the asymptotic expansions of non-holomorphic Eisenstein series Ramanujan J. 44 237-280
[9]  
Katsurada M(1887)Transformation formulae and asymptotic expansions for double holomorphic Eisenstein series of two variables Acta Math. 11 19-24
[10]  
Noda T(1971)Note sur la fonction Trans. Am. Math. Soc. 159 505-509