Existence and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-Estimates of the Solutions to a Class of Inclusion ProblemsExistence and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-Estimates...G. Dong, X. Fang

被引:0
作者
Ge Dong [1 ]
Xiaochun Fang [2 ]
机构
[1] Shanghai Technical Institute of Electronics and Information,Public Basic College
[2] Tongji University,School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education)
关键词
The generalized Orlicz–Sobolev spaces; Existence of solutions; -estimates; Nonlinear elliptic inclusion problems; Multivalued convection term; 35J20; 35J25; 35J60;
D O I
10.1007/s40840-024-01799-w
中图分类号
学科分类号
摘要
We introduce a class of inclusion problems with the Dirichlet boundary involving nonlinear elliptic differential operators and multivalued convection terms in the generalized Orlicz–Sobolev spaces. Some sufficient conditions are provided to ensure that sub and supersolutions exist. We established existence theorems and estimated L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norm of solutions to the inclusion problems via the method of sub-supersolution. Some examples of applications for the above inclusion problems are presented.
引用
收藏
相关论文
empty
未找到相关数据