Existence and L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{\infty }$$\end{document}-Estimates of the Solutions to a Class of Inclusion ProblemsExistence and L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{\infty }$$\end{document}-Estimates...G. Dong, X. Fang
被引:0
作者:
Ge Dong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Technical Institute of Electronics and Information,Public Basic CollegeShanghai Technical Institute of Electronics and Information,Public Basic College
Ge Dong
[1
]
Xiaochun Fang
论文数: 0引用数: 0
h-index: 0
机构:
Tongji University,School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education)Shanghai Technical Institute of Electronics and Information,Public Basic College
Xiaochun Fang
[2
]
机构:
[1] Shanghai Technical Institute of Electronics and Information,Public Basic College
[2] Tongji University,School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education)
The generalized Orlicz–Sobolev spaces;
Existence of solutions;
-estimates;
Nonlinear elliptic inclusion problems;
Multivalued convection term;
35J20;
35J25;
35J60;
D O I:
10.1007/s40840-024-01799-w
中图分类号:
学科分类号:
摘要:
We introduce a class of inclusion problems with the Dirichlet boundary involving nonlinear elliptic differential operators and multivalued convection terms in the generalized Orlicz–Sobolev spaces. Some sufficient conditions are provided to ensure that sub and supersolutions exist. We established existence theorems and estimated L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{\infty }$$\end{document} norm of solutions to the inclusion problems via the method of sub-supersolution. Some examples of applications for the above inclusion problems are presented.