aurora: a machine learning gwas tool for analyzing microbial habitat adaptation

被引:0
作者
Bujdos, Dalimil [1 ,2 ]
Walter, Jens [1 ,2 ,3 ]
O'Toole, Paul W. [1 ,2 ]
机构
[1] Natl Univ Ireland, Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[2] Natl Univ Ireland, Univ Coll Cork, Sch Microbiol, Cork, Ireland
[3] Univ Coll Cork, Natl Univ Ireland, Dept Med, Cork, Ireland
关键词
GWAS; Microbial GWAS; Habitat adaptation; Machine learning; Limosilactobacillus reuteri; Lactiplantibacillus plantarum; Salmonella Typhimurium; Mycobacterium paratuberculosis; Autochthonous; Allochthonous; GENOME-WIDE ASSOCIATION; LACTOBACILLUS-PLANTARUM; SALMONELLA-ENTERICA; PROTECTIVE EFFICACY; ECOLOGICAL ROLE; TYPHIMURIUM; REUTERI; DIVERSITY; VIRULENCE; PARATUBERCULOSIS;
D O I
10.1186/s13059-025-03524-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
引用
收藏
页数:40
相关论文
共 50 条
[31]   ANALYZING THE DIFFICULTY OF ENGLISH ARTICLE WITH MACHINE LEARNING APPROACH [J].
Yu, Li-Chih ;
Yang, Jiann-Ming .
6TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI 2013), 2013, :3920-3926
[32]   Analyzing browsing across websites by machine learning methods [J].
Falke A. ;
Hruschka H. .
Journal of Business Economics, 2022, 92 (5) :829-852
[33]   Analyzing sales proposal rejections via machine learning [J].
Nguyen, Peter ;
Friend, Scott B. ;
Chase, Kevin S. ;
Johnson, Jeff S. .
JOURNAL OF PERSONAL SELLING & SALES MANAGEMENT, 2023, 43 (01) :24-45
[34]   Evaluating Machine Learning Methods of Analyzing Multiclass Metabolomics [J].
Gong, Yaguo ;
Ding, Wei ;
Wang, Panpan ;
Wu, Qibiao ;
Yao, Xiaojun ;
Yang, Qingxia .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (24) :7628-7641
[35]   Analyzing histopathological images by using machine learning techniques [J].
Darshana A. Naik ;
R. Madana Mohana ;
Gandikota Ramu ;
Y. Sri Lalitha ;
M. SureshKumar ;
K. V. Raghavender .
Applied Nanoscience, 2023, 13 :2507-2513
[36]   Analyzing the Efficiency of Recommender Systems Using Machine Learning [J].
Gonzalez, Daniel ;
Tansini, Libertad .
INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 :692-698
[37]   High-Dimensional Multi-trait GWAS By Reverse Prediction of Genotypes Using Machine Learning Methods [J].
Malik, Muhammad Ammar ;
Ludl, Adriaan-Alexander ;
Michoel, Tom .
COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2021, 2022, 13483 :79-93
[38]   United they stand, divided they fall: Machine Learning accurately predicts multiple sclerosis severity where GWAS fails [J].
Jokubaitis, V. G. ;
Ibrahim, O. ;
Stankovich, J. ;
Kleinova, P. ;
Matesanz, F. ;
Patsopoulos, N. ;
Hui, D. ;
Eichau, S. ;
Lechner-Scott, J. ;
Slee, M. ;
Krupa, M. ;
Lea, R. ;
Kilpatrick, T. ;
Kalincik, T. ;
De Jager, P. ;
Beecham, A. ;
McCauley, J. ;
Taylor, B. ;
Booth, D. ;
Vucic, S. ;
Laverick, L. ;
Havrdova, E. ;
Izquierdo, G. ;
van der Walt, A. ;
Horakova, D. ;
Butzkueven, H. .
MULTIPLE SCLEROSIS JOURNAL, 2022, 28 :13-13
[39]   United they stand, divided they fall: Machine Learning accurately predicts multiple sclerosis severity where GWAS fails [J].
Jokubaitis, V. G. ;
Ibrahim, O. ;
Stankovich, J. ;
Kleinova, P. ;
Matesanz, F. ;
Patsopoulos, N. ;
Hui, D. ;
Eichau, S. ;
Lechner-Scott, J. ;
Slee, M. ;
Krupa, M. ;
Lea, R. ;
Kilpatrick, T. ;
Kalincik, T. ;
De Jager, P. ;
Beecham, A. ;
McCauley, J. ;
Taylor, B. ;
Booth, D. ;
Vucic, S. ;
Laverick, L. ;
Havrdova, E. ;
Izquierdo, G. ;
van der Walt, A. ;
Horakova, D. ;
Butzkueven, H. .
MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (4_SUPPL) :13-13
[40]   Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica [J].
Wheeler, Nicole E. ;
Gardner, Paul P. ;
Barquist, Lars .
PLOS GENETICS, 2018, 14 (05)