aurora: a machine learning gwas tool for analyzing microbial habitat adaptation

被引:0
作者
Bujdos, Dalimil [1 ,2 ]
Walter, Jens [1 ,2 ,3 ]
O'Toole, Paul W. [1 ,2 ]
机构
[1] Natl Univ Ireland, Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[2] Natl Univ Ireland, Univ Coll Cork, Sch Microbiol, Cork, Ireland
[3] Univ Coll Cork, Natl Univ Ireland, Dept Med, Cork, Ireland
关键词
GWAS; Microbial GWAS; Habitat adaptation; Machine learning; Limosilactobacillus reuteri; Lactiplantibacillus plantarum; Salmonella Typhimurium; Mycobacterium paratuberculosis; Autochthonous; Allochthonous; GENOME-WIDE ASSOCIATION; LACTOBACILLUS-PLANTARUM; SALMONELLA-ENTERICA; PROTECTIVE EFFICACY; ECOLOGICAL ROLE; TYPHIMURIUM; REUTERI; DIVERSITY; VIRULENCE; PARATUBERCULOSIS;
D O I
10.1186/s13059-025-03524-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
引用
收藏
页数:40
相关论文
共 50 条
[21]   Unveiling Microbial Nitrogen Metabolism in Rivers using a Machine Learning Approach [J].
Jia, Yuying ;
Hu, Xiangang ;
Kang, Weilu ;
Dong, Xu .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (15) :6605-6615
[22]   Environmental Adaptation and Differential Replication in Machine Learning [J].
Unceta, Irene ;
Nin, Jordi ;
Pujol, Oriol .
ENTROPY, 2020, 22 (10) :1-14
[23]   Dynamic adaptation of policies using machine learning [J].
Pelaez, Alejandro ;
Parashar, Manish ;
Quiroz, Andres .
2016 16TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2016, :501-510
[24]   Dynamic Microarchitectural Adaptation Using Machine Learning [J].
Dubach, Christophe ;
Jones, Timothy M. ;
Bonilla, Edwin V. .
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2013, 10 (04)
[25]   Incorporating microbial community data with machine learning techniques to predict feed substrates in microbial fuel cells [J].
Cai, Wenfang ;
Lesnik, Keaton Larson ;
Wade, Matthew J. ;
Heidrich, Elizabeth S. ;
Wang, Yunhai ;
Liu, Hong .
BIOSENSORS & BIOELECTRONICS, 2019, 133 :64-71
[26]   Analyzing histopathological images by using machine learning techniques [J].
Naik, Darshana A. ;
Mohana, R. Madana ;
Ramu, Gandikota ;
Lalitha, Y. Sri ;
SureshKumar, M. ;
Raghavender, K., V .
APPLIED NANOSCIENCE, 2022, 13 (3) :2507-2513
[27]   Analyzing Graduation Project Ideas by using Machine Learning [J].
Alharbi H.A. ;
Alshaya H.I. ;
Alsheail M.M. ;
Koujan M.H. .
International Journal of Interactive Mobile Technologies, 2021, 15 (23) :136-147
[28]   Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting [J].
Yeom, Samuel ;
Giacomelli, Irene ;
Fredrikson, Matt ;
Jha, Somesh .
IEEE 31ST COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2018), 2018, :268-282
[29]   ANALYZING THE DIFFICULTY OF ENGLISH ARTICLE WITH MACHINE LEARNING APPROACH [J].
Yu, Li-Chih ;
Yang, Jiann-Ming .
6TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI 2013), 2013, :3920-3926
[30]   Analyzing browsing across websites by machine learning methods [J].
Falke A. ;
Hruschka H. .
Journal of Business Economics, 2022, 92 (5) :829-852