aurora: a machine learning gwas tool for analyzing microbial habitat adaptation

被引:0
作者
Bujdos, Dalimil [1 ,2 ]
Walter, Jens [1 ,2 ,3 ]
O'Toole, Paul W. [1 ,2 ]
机构
[1] Natl Univ Ireland, Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[2] Natl Univ Ireland, Univ Coll Cork, Sch Microbiol, Cork, Ireland
[3] Univ Coll Cork, Natl Univ Ireland, Dept Med, Cork, Ireland
关键词
GWAS; Microbial GWAS; Habitat adaptation; Machine learning; Limosilactobacillus reuteri; Lactiplantibacillus plantarum; Salmonella Typhimurium; Mycobacterium paratuberculosis; Autochthonous; Allochthonous; GENOME-WIDE ASSOCIATION; LACTOBACILLUS-PLANTARUM; SALMONELLA-ENTERICA; PROTECTIVE EFFICACY; ECOLOGICAL ROLE; TYPHIMURIUM; REUTERI; DIVERSITY; VIRULENCE; PARATUBERCULOSIS;
D O I
10.1186/s13059-025-03524-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
引用
收藏
页数:40
相关论文
共 50 条
[1]   Analyzing Medicago spp. seed morphology using GWAS and machine learning [J].
Botkin, Jacob ;
Medina, Cesar ;
Park, Sunchung ;
Poudel, Kabita ;
Cha, Minhyeok ;
Lee, Yoonjung ;
Prom, Louis K. ;
Curtin, Shaun J. ;
Xu, Zhanyou ;
Ahn, Ezekiel .
SCIENTIFIC REPORTS, 2024, 14 (01)
[2]   A biochemically-interpretable machine learning classifier for microbial GWAS [J].
Kavvas, Erol S. ;
Yang, Laurence ;
Monk, Jonathan M. ;
Heckmann, David ;
Palsson, Bernhard O. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Machine Learning Tool for Analyzing Finite Buffer Queueing Systems [J].
Alfa, Attahiru Sule ;
Abu Ghazaleh, Haitham .
MATHEMATICS, 2025, 13 (03)
[4]   Comparative analysis of machine learning models for shortlisting SNPs to facilitate detection of marginal epistasis in GWAS [J].
Dasmandal, Tanwy ;
Sinha, Dipro ;
Rai, Anil ;
Mishra, Dwijesh Chandra ;
Archak, Sunil .
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
[5]   Tool Path Adaptation of a Cobot Using Supervisory Control with Machine Learning [J].
Li, Anran ;
Gurocak, Hakan .
2023 11TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA, 2023, :375-379
[6]   LOsMonitor: A Machine Learning Tool for Analyzing and Monitoring Cognitive Levels of Assessment Questions [J].
Alammary, Ali Saleh .
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2021, 14 (05) :640-652
[7]   Machine Learning for Analyzing Malware [J].
Dong, Yajie ;
Liu, Zhenyan ;
Yan, Yida ;
Wang, Yong ;
Peng, Tu ;
Zhang, Ji .
NETWORK AND SYSTEM SECURITY, 2017, 10394 :386-398
[8]   A machine learning tool for collecting and analyzing subjective road safety data from Twitter [J].
Abedi, Mohammad Majid ;
Sacchi, Emanuele .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
[9]   Machine Learning Model for Analyzing Learning Situations in Programming Learning [J].
Kawaguchi, Shota ;
Sato, Yoshiki ;
Nakayama, Hiroki ;
Onuma, Ryo ;
Nakamura, Shoichi ;
Miyadera, Youzou .
2018 IEEE CONFERENCE ON BIG DATA AND ANALYTICS (ICBDA), 2018, :74-79
[10]   Prediction tool for renal adaptation after living kidney donation using interpretable machine learning [J].
Jeon, Junseok ;
Yu, Jae Yong ;
Song, Yeejun ;
Jung, Weon ;
Lee, Kyungho ;
Lee, Jung Eun ;
Huh, Wooseong ;
Cha, Won Chul ;
Jang, Hye Ryoun .
FRONTIERS IN MEDICINE, 2023, 10