Mechanism of acclimation to chronic intermittent hypoxia in the gills of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Liu, Qiao
Wang, Hong
Ge, Jiayu
Guo, Lipeng [1 ]
Tahir, Rabia [1 ]
Luo, Jie [1 ]
He, Kuo [1 ]
Yan, Haoxiao [1 ]
Zhang, Xin [1 ]
Cao, Quanquan [1 ]
Cheng, Zhang [2 ]
Zhao, Liulan [1 ]
Yang, Song [1 ]
机构
[1] Sichuan Agr Univ, Coll Anim Sci & Technol, Chengdu 611130, Sichuan, Peoples R China
[2] Sichuan Agr Univ, Coll Environm, Chengdu 611130, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypoxia; Largemouth bass; Gills; Glycolysis; Calcium signaling; Immune response; NILE TILAPIA; FISH; MITOCHONDRIA; CELL; STRATEGIES; MORPHOLOGY; TOLERANCE; RESPONSES; TELEOST; ISOFORM;
D O I
10.1007/s10695-024-01419-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The acclimation response of fish gills to chronic intermittent hypoxia (CIH) is an important aspect to understand, as anthropogenically induced hypoxia in water bodies has been a stressor for fish for many years and is expected to persist in the future. In order to investigate the acclimation response of fish gills to CIH stress, we conducted a study using largemouth bass (Micropterus salmoides) exposed to intermittent hypoxia (dissolved oxygen level, 2.0 mg<middle dot>L-1) for either 1 or 3 h per day, over a period of 8 weeks. Our findings indicate that exposure to CIH induced remodeling of the gills and an increase in gill surface area. This remodeling of the gills may be attributed to changes in cell growth and proliferation, which are influenced by the activation of the MAPK signaling pathway. We also observed significant upregulation of genes related to glycolysis (fba, pgam1, pepck, atp-pfk, pfk-2, g6pi, gapd-1, and pk), while genes associated with cholesterol synthesis (3 beta-hsd, cyp51, dsdr- x 1, dsdr, and dhcr7) were downregulated following CIH exposure. Furthermore, we observed the presence of elongated megamitochondria in mitochondria-rich cells within the gills of fish exposed to hypoxia. Additionally, numerous genes involved in calcium signaling pathways were upregulated in the gills of largemouth bass, suggesting an enhanced sensitivity of gills to environmental cues in hypoxia conditions. However, the expression levels of certain genes related to innate and adaptive immune responses were inhibited following CIH exposure. Moreover, the number of mucous cells decreased after CIH exposure. This may have made the gills more susceptible to infection by pathogens, although it facilitated oxygen uptake. These findings highlight the potential vulnerability of gills to pathogenic organisms in the presence of CIH. Overall, our study contributes to a better understanding of how fish acclimate to CIH.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] Identification of feed enhancers for juvenile largemouth bass Micropterus salmoides
    Kubitza, F
    Lovshin, LL
    Lovell, RT
    AQUACULTURE, 1997, 148 (2-3) : 191 - 200
  • [42] CONSIDERATIONS OF BLOOD PARAMETERS OF LARGEMOUTH BASS, MICROPTERUS-SALMOIDES
    CLARK, S
    WHITMORE, DH
    MCMAHON, RF
    JOURNAL OF FISH BIOLOGY, 1979, 14 (02) : 147 - 158
  • [43] AN EPIZOOTIC OF EDWARDSIELLA-TARDA IN LARGEMOUTH BASS (MICROPTERUS, SALMOIDES)
    FRANCISFLOYD, R
    REED, P
    BOLON, B
    ESTES, J
    MCKINNEY, S
    JOURNAL OF WILDLIFE DISEASES, 1993, 29 (02) : 334 - 336
  • [44] Oxidation of energy substrates in tissues of Largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Wu, Guoyao
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 : 68 - 69
  • [45] Food chain transfer of perchlorate in largemouth bass, Micropterus salmoides
    Park, JW
    Rinchard, J
    Anderson, TA
    Liu, F
    Theodorakis, CW
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2005, 74 (01) : 56 - 63
  • [46] Characterization of a peribunyavirus isolated from largemouth bass (Micropterus salmoides)
    Waltzek, Thomas B.
    Subramaniam, Kuttichantran
    Leis, Eric
    Katona, Ryan
    Ng, Terry Fei Fan
    Delwart, Eric
    Barbknecht, Marisa
    Rock, Kelly
    Hoffman, Michael A.
    VIRUS RESEARCH, 2019, 273
  • [47] Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Jia, Sichao
    Song, Fei
    Zhou, Chuanpeng
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 1017 - 1032
  • [48] Largemouth bass (Micropterus salmoides Lacepede):: results of farming trials
    Melotti, P.
    Roncarati, A.
    Dees, A.
    Vicenzi, R.
    ITALIAN JOURNAL OF ANIMAL SCIENCE, 2005, 4 : 589 - 590
  • [49] Simultaneous Isolation and Identification of Largemouth Bass Virus and Rhabdovirus from Moribund Largemouth Bass (Micropterus salmoides)
    Jin, Yuqi
    Bergmann, Sven M.
    Mai, Qianyi
    Yang, Ying
    Liu, Weiqiang
    Sun, Dongli
    Chen, Yanfeng
    Yu, Yingying
    Liu, Yuhong
    Cai, Wenlong
    Dong, Hanxu
    Li, Hua
    Yu, Hui
    Wu, Yali
    Lai, Mingjian
    Zeng, Weiwei
    VIRUSES-BASEL, 2022, 14 (08):
  • [50] Temporal Dynamics of Immune Response Signalling in Largemouth Bass (Micropterus salmoides) Infected With Largemouth Bass Virus
    Chu, Xin
    Chen, Jing
    Lin, Lingyun
    Yao, Jiayun
    Huang, Lei
    Gao, Mingyue
    Shen, Jinyu
    Pan, Xiaoyi
    JOURNAL OF FISH DISEASES, 2025,