Eigenvalue variations of the Neumann Laplace operator due to perturbed boundary conditions

被引:0
作者
Nursultanov, Medet [1 ,2 ]
Trad, William [3 ]
Tzou, Justin [4 ]
Tzou, Leo [5 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Inst Math & Math Modeling Almaty, Alma Ata, Kazakhstan
[3] Univ Sydney, Sch Math & Stat, Sydney, Australia
[4] Macquarie Univ, Sch Math & Phys Sci, Sydney, Australia
[5] Univ Amsterdam, Amsterdam, Netherlands
基金
澳大利亚研究理事会; 芬兰科学院;
关键词
Eigenvalues; Neumann Laplacian; Singular perturbation; SMALL-DIAMETER; ELECTROMAGNETIC-FIELDS; NARROW ESCAPE; PERTURBATIONS; ASYMPTOTICS; FORMULA; INHOMOGENEITIES; TIME;
D O I
10.1007/s40687-024-00486-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work considers the Neumann eigenvalue problem for the weighted Laplacian on a Riemannian manifold (M,g,partial derivative M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g,\partial M)$$\end{document} under a singular perturbation. This perturbation involves the imposition of vanishing Dirichlet boundary conditions on a small portion of the boundary. We derive an asymptotic expansion of the perturbed eigenvalues as the Dirichlet part shrinks to a point x & lowast;is an element of partial derivative M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>*\in \partial M$$\end{document} in terms of the spectral parameters of the unperturbed system. This asymptotic expansion demonstrates the impact of the geometric properties of the manifold at a specific point x & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>*$$\end{document}. Furthermore, it becomes evident that the shape of the Dirichlet region holds significance as it impacts the first terms of the asymptotic expansion. A crucial part of this work is the construction of the singularity structure of the restricted Neumann Green's function which may be of independent interest. We employ a fusion of layer potential techniques and pseudo-differential operators during this work.
引用
收藏
页数:27
相关论文
共 47 条
[1]   Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications [J].
Abatangelo, L. ;
Felli, V ;
Lena, C. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
[2]   An accurate formula for the reconstruction of conductivity inhomogeneities [J].
Ammari, H ;
Seo, JK .
ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (04) :679-705
[3]   Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion [J].
Ammari, H ;
Kang, H ;
Nakamura, G ;
Tanuma, K .
JOURNAL OF ELASTICITY, 2002, 67 (02) :97-129
[4]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[5]  
Ammari H., 2009, MATH SURVEYS MONOGRA, V153
[6]  
Ammari H., 2004, LECT NOTES MATH, V1846, DOI 10.1007/b98245
[7]   Layer potential techniques for the narrow escape problem [J].
Ammari, Habib ;
Kalimeris, Kostis ;
Kang, Hyeonbae ;
Lee, Hyundae .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01) :66-84
[8]  
Bandara L, 2021, ANN SCUOLA NORM-SCI, V22, P1843, DOI 10.2422/2036-2145.201902_003
[9]   Dirichlet-to-Neumann maps on bounded Lipschitz domains [J].
Behrndt, J. ;
ter Elst, A. F. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) :5903-5926
[10]   SMALL VOLUME ASYMPTOTICS FOR ANISOTROPIC ELASTIC INCLUSIONS [J].
Beretta, Elena ;
Bonnetier, Eric ;
Francini, Elisa ;
Mazzucato, Anna L. .
INVERSE PROBLEMS AND IMAGING, 2012, 6 (01) :1-23