Shape Optimization of Harmonic Helicity in Toroidal Domains

被引:0
作者
Robin, Remi [1 ]
Roussel, Robin [2 ]
机构
[1] PSL Res Univ, Sorbonne Univ, Lab Phys Ecole Normale Super, Mines Paris,Inria,CNRS,ENS PSL, Paris, France
[2] Sorbonne Univ, Lab Jacques Louis Lions, Inria, Paris, France
关键词
Shape optimization; Magnetic helicity; Harmonic fields; Finite element exterior calculus; Stellarators; FINITE-ELEMENT APPROXIMATION; EXTERIOR CALCULUS; BIOT-SAVART; OPERATOR;
D O I
10.1007/s10957-024-02588-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a new shape functional defined for toroidal domains that we call harmonic helicity, and study its shape optimization. Given a toroidal domain, we consider its associated harmonic field. The latter is the magnetic field obtained uniquely up to normalization when imposing zero normal trace and zero electrical current inside the domain. We then study the helicity of this field, which is a quantity of interest in magneto-hydrodynamics corresponding to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} product of the field with its image by the Biot-Savart operator. To do so, we begin by discussing the appropriate functional framework and an equivalent PDE characterization. We then focus on shape optimization, and we identify the shape gradient of the harmonic helicity. Finally, we study and implement an efficient numerical scheme to compute harmonic helicity and its shape gradient using finite elements exterior calculus.
引用
收藏
页数:43
相关论文
共 43 条
[1]   Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations [J].
Alnaes, Martin S. ;
Logg, Anders ;
Olgaard, Kristian B. ;
Rognes, Marie E. ;
Wells, Garth N. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2014, 40 (02)
[2]   Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain [J].
Alonso-Rodriguez, A. ;
Camano, J. ;
Rodriguez, R. ;
Valli, A. ;
Venegas, P. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (06) :1493-1533
[3]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[4]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[5]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[6]  
2-B
[7]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[8]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[9]  
Arnold V.I., 2021, Topological Methods in Hydrodynamics, DOI DOI 10.1007/978-3-030-74278-2
[10]  
ARNOLD VI, 1966, PMM-J APPL MATH MEC+, V30, P223