共 52 条
- [1] Yoshizawa H., Chen Y. L., Israelachvili J., Fundamental Mechanisms of Interfacial Friction. 1. Relation Between Adhesion and Friction, J. Phys. Chem, 97, 16, pp. 4128-4140, (1993)
- [2] Dwivedi D. K., Adhesive Wear Behaviour of Cast Aluminium-Silicon Alloys: Overview, Mater. Des, 31, 5, pp. 2517-2531, (2010)
- [3] Wei H., Wenjian C., Shaoping W., Tomovic M. M., Mechanical Wear Debris Feature, Detection, and Diagnosis: A Review, Chin. J. Aeronaut, 31, 5, pp. 867-882, (2018)
- [4] Karnavas Y. L., Vairis A., Modelling of Frictional Phenomena Using Neural Networks: Friction Coefficient Estimation, Proceedings of the IASTED International Conference on Applied Simulation and Modelling (ASM 2011), pp. 54-58, (2011)
- [5] Bhushan B., Israelachvili J. N., Landman U., Nanotribology: Friction, Wear and Lubrication at the Atomic Scale, Nature, 374, 6523, pp. 607-616, (1995)
- [6] Pandiyan V., Prost J., Vorlaufer G., Varga M., Wasmer K., Identification of Abnormal Tribological Regimes Using a Microphone and Semi-Supervised Machine-Learning Algorithm, Friction, 10, 4, pp. 583-596, (2022)
- [7] Holmberg K., Erdemir A., Influence of Tribology on Global Energy Consumption, Costs and Emissions, Friction, 5, 3, pp. 263-284, (2017)
- [8] Rosenkranz A., Marian M., Profito F. J., Aragon N., Shah R., The Use of Artificial Intelligence in Tribology-A Perspective, Lubricants, 9, 1, (2020)
- [9] Pandiyan V., Modelling and In-Process Monitoring of Abrasive Belt Grinding Process, (2019)
- [10] Thankachan T., Soorya Prakash K., Kavimani V., Silambarasan S., Machine Learning and Statistical Approach to Predict and Analyze Wear Rates in Copper Surface Composites, Met. Mater. Int, 27, 2, pp. 220-234, (2021)