Uniqueness and Nondegeneracy of Positive Solutions of General Kirchhoff Type Equations

被引:0
|
作者
Yu-ting Kang [1 ]
Peng Luo [2 ]
Chang-lin Xiang [3 ]
Xue-xiu Zhong [4 ]
机构
[1] China Three Gorges University,Department of Mathematics, College of Mathematics and Physics
[2] Central China Normal University,School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences
[3] China Three Gorges University,Three Gorges Mathematical Research Center
[4] South China Normal University,South China Research Center for Applied Mathematics and Interdisciplinary Studies
来源
Acta Mathematicae Applicatae Sinica, English Series | 2025年 / 41卷 / 2期
关键词
Kirchhoff type equations; general nonlinearities; uniqueness; nondegeneracy; singular perturbation problem; 35B05; 35B45;
D O I
10.1007/s10255-023-1062-7
中图分类号
学科分类号
摘要
In the present paper, we study uniqueness and nondegeneracy of positive solutions to the general Kirchhoff type equations −M(∫RN∣∇v∣2dx)Δv=g(v)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-M\left(\int_{\mathbb{R}^{N}}{\vert\nabla v\vert}^{2}dx\right)\Delta v=g(v) \quad {\rm in}\;{\mathbb{R}^{N}},$$\end{document} where M: [0, +∞) ↦ ℝ is a continuous function satisfying some suitable conditions and v ∈ H1(ℝN). Applying our results to the case M(t) = at + b, a, b > 0, we make it clear all the positive solutions for all dimensions N ≥ 1. Our results can be viewed as a generalization of the corresponding results of Li et al. [JDE, 2020, 268, Section 1.2].
引用
收藏
页码:414 / 424
页数:10
相关论文
共 50 条
  • [1] Uniqueness and Nondegeneracy of Positive Solutions of General Kirchhoff Type Equations
    Yuting KANG
    Peng LUO
    Changlin XIANG
    Xuexiu ZHONG
    Acta Mathematicae Applicatae Sinica, 2025, 41 (02) : 414 - 424
  • [2] Some remarks on uniqueness of positive solutions to Kirchhoff type equations
    Wu, Ke
    Zhou, Fen
    Gu, Guangze
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [3] Existence and uniqueness of positive solutions for Kirchhoff type beam equations
    Wang, Jinxiang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (61) : 1 - 14
  • [4] EXISTENCE, UNIQUENESS, AND NONDEGENERACY OF POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS
    SMOLLER, JA
    WASSERMAN, AG
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 95 (02) : 129 - 159
  • [5] EXISTENCE OF POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS
    Afrouzi, Ghasem A.
    Nguyen Thanh Chung
    Shakeri, Saleh
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [6] NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS
    刘文民
    钟学秀
    周锦芳
    Acta Mathematica Scientia, 2024, 44 (05) : 1886 - 1902
  • [7] Normalized solutions for the general Kirchhoff type equations
    Liu, Wenmin
    Zhong, Xuexiu
    Zhou, Jinfang
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1886 - 1902
  • [8] UNIQUENESS AND NONDEGENERACY OF POSITIVE SOLUTIONS TO AN ELLIPTIC SYSTEM IN ECOLOGY
    LI, Zaizheng
    Zhang, Zhitao
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3761 - 3774
  • [9] Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth
    Li, Gongbao
    Xiang, Chang-Lin
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 270 - 275
  • [10] Uniqueness of positive solutions of the Choquard type equations
    Wang, Tao
    Yi, Taishan
    APPLICABLE ANALYSIS, 2017, 96 (03) : 409 - 417