Integration of radiomics ultrasound and TIRADS in diagnosis of thyroid nodules: a narrative review

被引:0
作者
Baishya, Nirupam Konwar [1 ]
Baishya, Kangkana [2 ]
机构
[1] Fakhruddin Ali Ahmed Med Coll & Hosp, Dept Radiol, Barpeta, India
[2] Assam Engn Coll, Dept Elect Engn, Gauhati, India
关键词
Artificial intelligence; Radiomics; Thyroid nodule; Ultrasonography;
D O I
10.1186/s43055-024-01381-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundThe most popular technique for evaluating thyroid imaging is high-frequency ultrasonography; however, the TIRADS tool, intended to help with noninvasive risk assessment, has limitations in detecting thyroid cancerous nodules. The purpose of this article was to review the application of TIRADS in ultrasound radiomics and discuss its advantages and limitations.Main textA novel approach to medical picture processing called radiomics can help identify these nodules more precisely. Radiomics involves obtaining high-quality imaging for planning or diagnostic reasons, identifying a macroscopic tumor, extracting quantitative imaging features, and ranking the most informative findings according to prominence, independence, and reproducibility.ConclusionsRadiomics combined with TIRADS has demonstrated strong potential in enhancing the accuracy of thyroid nodule malignancy predictions, though challenges such as the need for larger, diverse datasets, and thorough validation persist. Incorporating clinical data, using deep learning models, and standardized imaging protocols could improve diagnostic precision, and further research will, therefore, be essential for its implementation in routine clinical practice.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Prospective validation of the ultrasound based TIRADS (Thyroid Imaging Reporting And Data System) classification: results in surgically resected thyroid nodules [J].
Eleonora Horvath ;
Claudio F. Silva ;
Sergio Majlis ;
Ignacio Rodriguez ;
Velimir Skoknic ;
Alex Castro ;
Hugo Rojas ;
Juan-Pablo Niedmann ;
Arturo Madrid ;
Felipe Capdeville ;
Carolina Whittle ;
Ricardo Rossi ;
Miguel Domínguez ;
Hernán Tala .
European Radiology, 2017, 27 :2619-2628
[42]   A Comparison of the Performances of Artificial Intelligence System and Radiologists in the Ultrasound Diagnosis of Thyroid Nodules [J].
He, Lian-Tu ;
Chen, Feng-Juan ;
Zhou, Da-Zhi ;
Zhang, Yu-Xin ;
Li, Ying-Shan ;
Tang, Min-Xuan ;
Tang, Jia-Xin ;
Liu, Shuo ;
Chen, Zhi-Jie ;
Tang, Qing .
CURRENT MEDICAL IMAGING, 2022, 18 (13) :1369-1377
[43]   Impact of ultrasound angiography combined with fine needle aspiration for the diagnosis of thyroid nodules [J].
Wang, Jing ;
Bai, Xiao-Gang ;
Liu, Zhe .
MEDICINE, 2019, 98 (39)
[44]   Human-AI collaboration for ultrasound diagnosis of thyroid nodules: a clinical trial [J].
Edstrom, Axel Bukhave ;
Makouei, Fatemeh ;
Wennervaldt, Kasper ;
Lomholt, Anne Fog ;
Kaltoft, Mikkel ;
Melchiors, Jacob ;
Hvilsom, Gitte Bjorn ;
Bech, Magne ;
Tolsgaard, Martin ;
Todsen, Tobias .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (06) :3221-3231
[45]   Validating and Comparing C-TIRADS, K-TIRADS and ACR-TIRADS in Stratifying the Malignancy Risk of Thyroid Nodules [J].
Chen, Qingfang ;
Lin, Mingnan ;
Wu, Size .
FRONTIERS IN ENDOCRINOLOGY, 2022, 13
[46]   Intranodular and perinodular ultrasound radiomics distinguishes benign and malignant thyroid nodules: a multicenter study [J].
Zhu, Xuelin ;
Li, Jing ;
Li, Hao ;
Wang, Kaifeng ;
Zhang, Jian ;
Meng, Jian ;
Wu, Rong ;
Zhang, Meilan ;
Du, Hai .
GLAND SURGERY, 2024, 13 (12) :2359-2371
[47]   Degenerating Thyroid Nodules: Ultrasound Diagnosis, Clinical Significance, and Management [J].
Ren, Jie ;
Baek, Jung Hwan ;
Chung, Sae Rom ;
Choi, Young Jun ;
Jung, Chan Kwon ;
Lee, Jeong Hyun .
KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (06) :947-955
[48]   Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules [J].
Tobcu, Eren ;
Karavas, Erdal ;
Yilmaz, Gulden Tasova ;
Topcu, Bilgin .
DIAGNOSTICS, 2025, 15 (08)
[49]   Combined Shear Wave Elastography and EU TIRADS in Differentiating Malignant and Benign Thyroid Nodules [J].
Chambara, Nonhlanhla ;
Lo, Xina ;
Chow, Tom Chi Man ;
Lai, Carol Man Sze ;
Liu, Shirley Yuk Wah ;
Ying, Michael .
CANCERS, 2022, 14 (22)
[50]   Comparative analysis of machine learning-based ultrasound radiomics in predicting malignancy of partially cystic thyroid nodules [J].
Zhou, Tianhan ;
Hu, Tao ;
Ni, Zhongkai ;
Yao, Chun ;
Xie, Yangyang ;
Jin, Haimin ;
Luo, Dingcun ;
Huang, Hai .
ENDOCRINE, 2024, 83 (01) :118-126