This work used the 6-311++G(d, p) basis set in the DFT/B3LYP and DFT/CAM-B3LYP technique to build the molecular structures of the nicotine and caffeine molecules. The minimum energy gives stability to these molecules with their corresponding dipole moment. The optimized structure to compute Raman spectroscopy and UV-Vis in CCl4 and DMSO solvent, employing the basis set 6-311++G(d, p), the DFT/B3LYP and CAM-B3LYP hybrid function, with the C-PCM model. The re-optimized molecule is used to study NLOs property which also give the dipole moment, polarizability and hyperpolarizability of titled molecules. We used AIM to investigate these molecules' intramolecular interactions, bond critical points, and interbasin paths. Multiwfn software 3.8 produces the NCI-RGD diagram, which we use to determine weak interaction, electron density, Van der Waals interaction, steric effect, and hydrogen bond. Similarly, we analyze the covalent bond with the molecular surface using ELF and LOL techniques.