New congruences for broken k-diamond partitions

被引:0
作者
Yu, Jing-Jun [1 ,2 ]
机构
[1] Hangzhou Polytech, Hangzhou 311402, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
关键词
Diamond partitions; Eta-quotients; Modular forms; Congruences; ANDREWS;
D O I
10.1007/s11139-024-00950-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Broken k-diamond partitions were introduced by Andrews and Paule. Letk(n) denotethe number of brokenk-diamond partitions ofn. In 2015, by using the theory ofRamanujan's theta function, Ahmed and Baruah established some congruences mod-ulo 2 for7(n). In this note, we continue to study the congruence properties of7(n).By using the theory of modular forms, we generalize the congruences proved byAhmed and Baruah. In addition, we also find two congruences modulo 2 for23(n)
引用
收藏
页码:1621 / 1629
页数:9
相关论文
共 10 条
[1]   Parity results for broken 5-diamond, 7-diamond and 11-diamond partitions [J].
Ahmed, Zakir ;
Baruah, Nayandeep Deka .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) :527-542
[2]   MacMahon's partition analysis XI: Broken diamonds and modular forms [J].
Andrews, George E. ;
Paule, Peter .
ACTA ARITHMETICA, 2007, 126 (03) :281-294
[3]   Some congruences for Andrews-Paule's broken 2-diamond partitions [J].
Chan, Song Heng .
DISCRETE MATHEMATICS, 2008, 308 (23) :5735-5741
[4]   On recent congruence results of Andrews and Paule for broken k-diamonds [J].
Hirschhorn, Michael D. ;
Sellers, James A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (01) :121-126
[5]   Some expressions for binary theta series by eta-quotients and their applications [J].
Ogasawara, Takeshi .
JOURNAL OF NUMBER THEORY, 2018, 186 :493-509
[6]  
Ono K., 2004, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, Regional Conference Series in Mathematics, V102
[7]   Infinite families of strange partition congruences for broken 2-diamonds [J].
Paule, Peter ;
Radu, Silviu .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :409-416
[8]   An extensive analysis of the parity of broken 3-diamond partitions [J].
Radu, Silviu ;
Sellers, James A. .
JOURNAL OF NUMBER THEORY, 2013, 133 (11) :3703-3716
[9]  
Schoeneberg B., 1967, NEDERL AKAD WETENSCH, V29, P177, DOI DOI 10.1016/S1385-7258(67)50029-X
[10]   More infinite families of congruences modulo 5 for broken 2-diamond partitions [J].
Xia, Ernest X. W. .
JOURNAL OF NUMBER THEORY, 2017, 170 :250-262