Existence results for the 1-Laplacian problem with a critical concave-convex nonlinearity

被引:0
作者
Pimenta, Marcos T. O. [1 ]
Carranza, Yino B. C. [2 ]
Figueiredo, Giovany M. [3 ]
机构
[1] Univ Estadual Paulista Unesp, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[2] UNESP, Inst Biociencias Letras & Ciencias Exatas IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
1-Laplacian operator; singular nonlinearity; critical growth; MULTIPLE POSITIVE SOLUTIONS; LINEAR ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; SOBOLEV;
D O I
10.1007/s11784-024-01138-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a critical concave-convex type problem involving the 1-Laplacian operator in a general Lipschitz-continuous domain. We show an existence result using an approximation method, in which the solution is obtained as limit of solutions to p-Laplacian type problems. To overcome the lack of compactness, a version of the well-known Concentration Compactness Principle of Lions is used.
引用
收藏
页数:24
相关论文
共 42 条
  • [1] Positive solutions for Dirichlet problems of singular quasilinear elliptic equations via variational methods
    Agarwal, RP
    Lü, HS
    O'Regan, D
    [J]. MATHEMATIKA, 2004, 51 (101-02) : 187 - 202
  • [2] COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS
    AMBROSETTI, A
    BREZIS, H
    CERAMI, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) : 519 - 543
  • [3] Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
  • [4] Minimizing total variation flow
    Andreau, F
    Ballester, C
    Caselles, V
    Mazón, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 867 - 872
  • [5] The Dirichlet problem for the total variation flow
    Andreu, F
    Ballester, C
    Caselles, V
    Mazón, JM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) : 347 - 403
  • [6] Andreu F., 2001, DIFFERENTIAL INTEGRA, V14, P321, DOI DOI 10.57262/DIE/1356123331
  • [7] ANDREUVAILLO F, 2004, PROG MATH, V223, pR11
  • [8] ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
  • [9] Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity
    Arcoya, David
    Moreno-Merida, Lourdes
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 281 - 291
  • [10] Arcoya D, 2013, DIFFER INTEGRAL EQU, V26, P119