Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L.

被引:0
|
作者
Guo, Yanli [1 ]
Ren, Qingxiao [4 ]
Song, Manman [4 ]
Zhang, Xiangxiang [5 ]
Wan, Heping [3 ]
Liu, Fei [2 ]
机构
[1] Tianjin Agr Univ, Coll Hort & Landscape Architecture, Tianjin 300392, Peoples R China
[2] Henan Univ, Sch Life Sci, State Key Lab Crop Stress Adapt & Improvement, Kaifeng 475004, Henan, Peoples R China
[3] Jianghan Univ, Hubei Engn Res Ctr Conservat Dev & Utilizat Charac, Wuhan 430056, Peoples R China
[4] Nankai Univ, Coll Life Sci, Tianjin 300071, Peoples R China
[5] Chinese Acad Agr Sci, Oil Crops Res Inst, Wuhan 430062, Peoples R China
来源
BMC PLANT BIOLOGY | 2025年 / 25卷 / 01期
关键词
Brassica napus; CHYR; Abiotic stress; Ubiquitin E3 ligase; BnA03.CHYR.1; E3 UBIQUITIN LIGASE; CUTICULAR WAX BIOSYNTHESIS; ZINC-FINGER PROTEIN; ORYZA-SATIVA SALT; DROUGHT STRESS; NEGATIVE REGULATOR; POSITIVE REGULATOR; ENHANCES DROUGHT; ARABIDOPSIS; TOLERANCE;
D O I
10.1186/s12870-025-06343-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brassica napus, an allotetraploid used as an oilseed crop, vegetable, or feed crop, possesses significant economic and medicinal value. Although the CHYR gene family has been functionally characterised in various aspects of plant growth, development, and stress responses, its systematic investigation in B. napus is lacking. In contrast to the seven CHYR genes (AtCHYR1-AtCHYR7) identified in Arabidopsis thaliana, nine CHYR orthologues were detected in B. rapa and B. oleracea, while 24 were found in B. napus. This discrepancy is consistent with the established triplication events that occurred during the Brassicaceae family evolution. Phylogenetic analysis indicated that the 24 CHYRs identified in B. napus could be categorised into three distinct groups. Among these, 24 BnCHYRs contained conserved domains, including the CHY-zinc finger, C3H2C3-type RING finger and zinc ribbon domains. Group III members featured an additional one to three hemerythrin domains in their N-terminal regions. Each BnCHYR group shared similar patterns in the distribution of conserved domains. Our results revealed that the selected eight BnCHYRs were up-regulated following heat treatment, exhibiting varying expression patterns in response to salt, cold, and drought stress during the seedling stage. Expression analysis revealed that several BnCHYRs were significantly induced by one or more abiotic stressors. BnA03.CHYR.1 was significantly induced by salt and heat stress and repressed by polyethylene glycol treatment. BnA03.CHYR.1 was localised in the nucleus and cytoplasm, and its overexpression in A. thaliana enhanced tolerance to salt stress. Our results provide a comprehensive analysis of the CHYR family in B. napus, elucidating the biological role of BnA03.CHYR.1 in adaptive responses of plants to salt stress.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L.
    Wei Su
    Ali Raza
    Liu Zeng
    Ang Gao
    Yan Lv
    Xiaoyu Ding
    Yong Cheng
    Xiling Zou
    BMC Genomics, 22
  • [22] Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress
    Wei, Shiwei
    Gao, Liwei
    Zhang, Yidong
    Zhang, Furong
    Yang, Xiao
    Huang, Danfeng
    PLANT CELL REPORTS, 2016, 35 (09) : 1827 - 1839
  • [23] Genome-Wide Analysis of the JAZ Gene Family in Potato and Functional Verification of StJAZ23 Under Drought Stress
    Pu, Zhuanfang
    Qin, Tianyuan
    Wang, Yihao
    Wang, Xiangdong
    Shi, Ningfan
    Yao, Panfeng
    Liu, Yuhui
    Bai, Jiangping
    Bi, Zhenzhen
    Sun, Chao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [24] Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L.
    Sehrish, Sarfraz
    Sumbal, Wahid
    Xie, Meili
    Zhao, Chuanji
    Zuo, Rong
    Gao, Feng
    Liu, Shengyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [25] Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses
    Tan, Min
    Liao, Fang
    Hou, Lintao
    Wang, Jia
    Wei, Lijuan
    Jian, Hongju
    Xu, Xinfu
    Li, Jiana
    Liu, Liezhao
    EUPHYTICA, 2017, 213 (02)
  • [26] Genome-wide identification, evolution, and expression analysis of HVA22 gene family in Brassica napus L.
    Wang, Ping
    Wang, Lirong
    GENETIC RESOURCES AND CROP EVOLUTION, 2025,
  • [27] Genome-Wide Characterization and Analysis of Metallothionein Family Genes That Function in Metal Stress Tolerance in Brassica napus L.
    Pan, Yu
    Zhu, Meichen
    Wang, Shuxian
    Ma, Guoqiang
    Huang, Xiaohu
    Qiao, Cailin
    Wang, Rui
    Xu, Xinfu
    Liang, Ying
    Lu, Kun
    Li, Jiana
    Qu, Cunmin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
  • [28] Genome-Wide In Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus
    Lohani, Neeta
    Babaei, Saeid
    Singh, Mohan B.
    Bhalla, Prem L.
    PLANTS-BASEL, 2021, 10 (04):
  • [29] Genome-wide identification and expression analysis of the WRKY gene family in cabbage (Brassica oleracea var. capitata L.)
    Yang, Xuyan
    Zhao, Shuang
    Ge, Wendong
    Wang, Tenghui
    Fan, Zhenyu
    Wang, Yushu
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2022, 36 (01) : 759 - 772
  • [30] Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus
    Di, Feifei
    Jian, Hongju
    Wang, Tengyue
    Chen, Xueping
    Ding, Yiran
    Du, Hai
    Lu, Kun
    Li, Jiana
    Liu, Liezhao
    GENES, 2018, 9 (03)