On the initial spin periods of magnetars born in weak supernova explosions and their gravitational wave radiation

被引:1
作者
Yan, Yu-Long [1 ]
Cheng, Quan [1 ]
Zheng, Xiao-Ping [1 ]
Ouyang, Xia-Xia [1 ]
机构
[1] Cent China Normal Univ, Inst Astrophys, Wuhan 430079, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
关键词
GAMMA-RAY BURSTS; X-RAY; NEUTRON-STARS; SUPERLUMINOUS SUPERNOVAE; ENERGY INJECTION; EVOLUTION; FIELD; REMNANTS; CONNECTION; AFTERGLOWS;
D O I
10.1140/epjc/s10052-024-13406-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The initial spin periods of newborn magnetars are strongly associated with the origin of their strong magnetic fields, both of which can affect the electromagnetic radiation and gravitational waves (GWs) emitted at their birth. Combining the upper limit ESNR less than or similar to 1051\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\textrm{SNR}}\lesssim 10<^>{51}$$\end{document} erg on the explosion energies of the supernova (SN) remnants around slowly-spinning magnetars with a detailed investigation on the evolution of newborn magnetars, we set constraints on the initial spin periods of magnetars born in weak SN explosions. Depending on the conversion efficiency eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} of the electromagnetic energy of these newborn magnetars into the kinetic energy of SN ejecta, the minimum initial spin periods of these newborn magnetars are Pi, min similar or equal to 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{i, min}}\simeq 5$$\end{document}-6 ms for an ideal efficiency eta=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =1$$\end{document}, Pi, min similar or equal to 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{i, min}}\simeq 3$$\end{document}-4 ms for a possible efficiency eta=0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =0.4$$\end{document}, and Pi, min similar or equal to 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{i, min}}\simeq 1$$\end{document}-2 ms for a relatively low efficiency eta=0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =0.1$$\end{document}. Based on these constraints and adopting reasonable values for the physical parameters of the newborn magnetars, we find that their GW radiation at nu e,1=nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\textrm{e,1}}=\nu $$\end{document} may be undetectable by the Einstein Telescope (ET) since the maximum signal-to-noise ratio (S/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{S/N}$$\end{document}) is only 2.41 even the sources are located at a very close distance of 5 Mpc, where nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} are the spin frequencies of the magnetars. At such a distance, the GWs emitted at nu e,2=2 nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\textrm{e,2}}=2\nu $$\end{document} from the newborn magnetars with dipole fields Bd=5x1014\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\textrm{d}}=5\times 10<^>{14}$$\end{document} and 1015\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{15}$$\end{document} G may be detectable by the ET because S/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{S/N}$$\end{document} are 10.01 and 19.85, respectively. However, if these newborn magnetars are located at 20 Mpc away in the Virgo supercluster, no GWs could be detected by the ET due to low S/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{S/N}$$\end{document}.
引用
收藏
页数:11
相关论文
共 78 条
[1]   Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors [J].
Abadie, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abernathy, M. ;
Accadia, T. ;
Acerneseac, F. ;
Adams, C. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Ceron, E. Amador ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Antonuccia, F. ;
Aoudiaa, S. ;
Arain, M. A. ;
Araya, M. ;
Aronsson, M. ;
Arun, K. G. ;
Aso, Y. ;
Aston, S. ;
Astonea, P. ;
Atkinson, D. E. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballardin, G. ;
Ballmer, S. ;
Barker, D. ;
Barnum, S. ;
Baroneac, F. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barsuglia, M. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Bauchrowitz, J. ;
Bauera, Th S. ;
Behnke, B. ;
Beker, M. G. ;
Benacquista, M. ;
Bertolini, A. ;
Betzwieser, J. ;
Beveridge, N. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (17)
[2]   Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Aleman, K. M. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koya ;
Arai, Koji ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asada, H. ;
Asali, Y. ;
Ashton, G. ;
Aso, Y. .
ASTROPHYSICAL JOURNAL, 2021, 921 (01)
[3]   The magnetorotational instability in core-collapse supernova explosions [J].
Akiyama, S ;
Wheeler, JC ;
Meier, DL ;
Lichtenstadt, I .
ASTROPHYSICAL JOURNAL, 2003, 584 (02) :954-970
[4]   ON THE DYNAMICAL COUPLING BETWEEN THE SUPERFLUID INTERIOR AND THE CRUST OF A NEUTRON STAR [J].
ALPAR, MA ;
SAULS, JA .
ASTROPHYSICAL JOURNAL, 1988, 327 (02) :723-725
[5]   A new class of unstable modes of rotating relativistic stars [J].
Andersson, N .
ASTROPHYSICAL JOURNAL, 1998, 502 (02) :708-713
[6]   A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback [J].
Barrere, P. ;
Guilet, J. ;
Reboul-Salze, A. ;
Raynaud, R. ;
Janka, H-T .
ASTRONOMY & ASTROPHYSICS, 2022, 668
[7]   Constraining superfluidity in dense matter from the cooling of isolated neutron stars [J].
Beloin, Spencer ;
Han, Sophia ;
Steiner, Andrew W. ;
Page, Dany .
PHYSICAL REVIEW C, 2018, 97 (01)
[8]   A fossil origin for the magnetic field in A stars and white dwarfs [J].
Braithwaite, J ;
Spruit, HC .
NATURE, 2004, 431 (7010) :819-821
[9]   Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components [J].
Braithwaite, Jonathan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 397 (02) :763-774
[10]   Physics of Neutron Star Crusts [J].
Chamel, Nicolas ;
Haensel, Pawel .
LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)