Vacancy defect regulation in Copper(I) thiocyanate hole selective layer for efficient and stable crystalline silicon solar cells

被引:0
作者
Li, Songyu [1 ]
Ren, Penghui [1 ]
Zhao, Di [1 ]
Liu, Dan [1 ]
Wang, Jianqiao [1 ]
Zhou, Hang [1 ]
Liu, Wei [2 ]
Zeng, Yuheng [2 ]
Yu, Xuegong [3 ]
Cui, Can [1 ]
Wang, Peng [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Key Lab Opt Field Manipulat Zhejiang Prov, Hangzhou 310018, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon solar cells; Copper(I) thiocyanate; Hole-selective contact; Doping; Vacancies; CUSCN; TRANSPORT;
D O I
10.1016/j.mtener.2024.101782
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, p-type inorganic copper-based compounds have attracted increasing interest as hole-selective layers for crystalline silicon (c-Si) heterojunction solar cells. Among them, copper(I) thiocyanate (CuSCN) has a small valence band offset with c-Si and high stability, however, it has not been explored in c-Si solar cell applications. Herein, we successfully demonstrate that solution-processed CuSCN film acts as an effective hole-selective contact layer for p-Si solar cells. Nevertheless, the p-Si/CuSCN heterostructure suffers from an unsatisfactory surface passivation and a relatively high contact resistivity originated from the uncontrollable vacancy defects in the film. The I- doping of CuSCN film (CuSCN:I-) not only suppresses the generation of SCN vacancies, but also increases the Cu vacancies, significantly improving the hole selectivity. Moreover, a better energy band alignment is formed based on CuSCN:I-/MoO3 bilayer for hole selective contact of p-Si substrate, achieving a remarkably high photoelectric conversion efficiency (PCE) of 19.42 %. The PCEs of unencapsulated p-Si/CuSCN heterojunction solar cells maintain over 92 % of the initial values under storing in air atmosphere for 1200 h or after annealing at 350 degrees C. This work highlights that CuSCN is a very promising hole selective layer with superior stability for c-Si solar cell applications.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    [J]. NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [2] Light capacitances in silicon and perovskite solar cells
    Almora, Osbel
    Garcia-Belmonte, Germa
    [J]. SOLAR ENERGY, 2019, 189 : 103 - 110
  • [3] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [4] The effects of substitutional doping on Cu vacancy formation in Cu2O(111): a density functional theory study
    Beronio, Ellaine Rose A.
    Colambo, Ivy R.
    Padama, Allan Abraham B.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) : 8800 - 8808
  • [5] Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface
    Cao, Liqi
    Procel, Paul
    Alcaniz, Alba
    Yan, Jin
    Tichelaar, Frans
    Ozkol, Engin
    Zhao, Yifeng
    Han, Can
    Yang, Guangtao
    Yao, Zhirong
    Zeman, Miro
    Santbergen, Rudi
    Mazzarella, Luana
    Isabella, Olindo
    [J]. PROGRESS IN PHOTOVOLTAICS, 2023, 31 (12): : 1245 - 1254
  • [6] Stable MoOX-Based Heterocontacts forp-Type Crystalline Silicon Solar Cells Achieving 20% Efficiency
    Cao, Shuangying
    Li, Jingye
    Zhang, Juan
    Lin, Yinyue
    Lu, Linfeng
    Wang, Jilei
    Yin, Min
    Yang, Liyou
    Chen, Xiaoyuan
    Li, Dongdong
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (49)
  • [7] Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A
    Cao, Zhen
    Aharonian, F.
    Axikegu
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Bian, W.
    Bukevich, A. V.
    Cao, Q.
    Cao, W. Y.
    Cao, Zhe
    Chang, J.
    Chang, J. F.
    Chen, A. M.
    Chen, E. S.
    Chen, H. X.
    Chen, Liang
    Chen, Lin
    Chen, Long
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, M. Y.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Danzengluobu
    Dong, X. Q.
    Duan, K. K.
    Fan, J. H.
    Fan, Y. Z.
    Fang, J.
    Fang, J. H.
    Fang, K.
    Feng, C. F.
    Feng, H.
    Feng, L.
    Feng, S. H.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (13)
  • [8] Cu(I) hybrid inorganic-organic materials with intriguing stimuli responsive and optoelectronic properties
    Cariati, Elena
    Lucenti, Elena
    Botta, Chiara
    Giovanella, Umberto
    Marinotto, Daniele
    Righetto, Stefania
    [J]. COORDINATION CHEMISTRY REVIEWS, 2016, 306 : 566 - 614
  • [9] Carrier population control and surface passivation in solar cells
    Cuevas, Andres
    Wan, Yimao
    Yan, Di
    Samundsett, Christian
    Allen, Thomas
    Zhang, Xinyu
    Cui, Jie
    Bullock, James
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 184 : 38 - 47
  • [10] Study on the Thermal Stability of Molybdenum Oxide-Passivated Silicon Solar Cells
    Cui, Zhiyang
    Pang, Yicong
    Tang, Hanbo
    Liu, Zhaolang
    Wu, Taojian
    Wang, Zilei
    Lin, Hao
    Gao, Pingqi
    [J]. SOLAR RRL, 2024, 8 (08):